Phenotyping and Identification of Reduced Height (Rht) Alleles (Rht-B1b and Rht-D1b) in a Nepali Spring Wheat (Triticum aestivum L.) Diversity Panel to Enable Seedling Vigor Selection

AGRONOMY-BASEL(2021)

引用 4|浏览12
暂无评分
摘要
Nepal is facing more intense early-season drought stress associated with climate change. The introgression of reduced height (Rht) alleles to enable stem dwarfism in bread wheat (Triticum aestivum L.) inadvertently reduced coleoptile length and growth plasticity in seedlings, making improved varieties less suitable for deep seeding; these alleles may have also reduced seedling root length. Therefore, with the long-term objective of breeding wheat for early-season drought stress, a Nepali spring wheat panel was evaluated to assess allelic variation at the most common dwarfing-associated loci (Rht-B1, Rht-D1) and their impact on coleoptile/seedling root traits, and to identify accessions with longer and/or more GA-responsive coleoptiles as parents for future breeding. Here, Kompetitive Allele Specific PCR (KASP) was used to genotype accessions. The panel was phenotyped using the cigar-roll method in the presence/absence of GA(3). Plant height was measured under field conditions. The results showed that Nepali landraces had a significantly higher frequency of the non-dwarfing allele Rht-B1a. The dwarfing alleles Rht-B1b and Rht-D1b had negative effects on coleoptile length but positive effects on the length of the longest seedling root. However, 40 potential semi-dwarf accessions (possessing Rht-B1b and/or Rht-D1b alleles) with long and/or more plastic coleoptiles suited for deep sowing were identified. This included 12 accessions that exhibited significant changes in coleoptile length in response to GA(3) treatment.
更多
查看译文
关键词
Rht, coleoptile length, seedling root length, drought, deep seeding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要