谷歌浏览器插件
订阅小程序
在清言上使用

Electrospun Networks of ZnO-SnO2 Composite Nanowires As Electron Transport Materials for Perovskite Solar Cells

Journal of nanomaterials(2022)

引用 4|浏览10
暂无评分
摘要
Here, we report on the fabrication of one-dimensional (1D) zinc oxide-tin oxide (ZnO-SnO2, ZTO) hollow nanostructures by coaxial electrospinning followed by investigations of their electron transport properties in regular perovskite solar cells (PSCs). The as-electrospun nanowires (NWs) were obtained as core-shell nanostructures comprised of polymeric core and metal oxide precursors-polymer shell. Thermal analysis studies of the as-electrospun NWs revealed the optimum calcination temperature for complete removal of the polymer and formation of phase pure ZTO. The obtained nanostructured ZTO materials revealed a porous morphology with tubular nanostructures, i.e., NTs. The porous structure of nanoparticles, i.e., NTs in this case, is of particular interest due to the following reasons: (a) structure, particularly 1D, has a profound influence on the electron transport properties, and (b) suitable porosity helps in effective infiltration of perovskite material and hence supports better charge transport at the ZTO-perovskite interface. The nanomaterials were characterized by Fourier transform infrared (FTIR), diffuse reflectance spectroscopy (DRS), and energy dispersive X-ray spectroscopy (EDX) to confirm the presence/absence of functional groups, establish band gap energies (Eg), and determine the elemental compositions, respectively. The ZTO NTs were used as electron transport media in the fabrication of perovskite solar cells (PSCs) and established the structure-property (electron transport) relationships. The highest solar to power conversion efficiency (PCE) of 13.0% (average: 11.90%) was measured for the PSCs based on ZTO NTs obtained by calcination of as-electrospun NWs at 800°C. It indicates the fact that the calcination temperature influenced the structure which as a result influenced the electron transport property of the material used as ETL in PSCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要