谷歌浏览器插件
订阅小程序
在清言上使用

Selective Activation of Four Quasi-Equivalent C–H Bonds Yields N-doped Graphene Nanoribbons with Partial Corannulene Motifs

Nature communications(2022)

引用 6|浏览13
暂无评分
摘要
Selective C-H bond activation is one of the most challenging topics for organic reactions. The difficulties arise not only from the high C-H bond dissociation enthalpies but also the existence of multiple equivalent/quasi-equivalent reaction sites in organic molecules. Here, we successfully achieve the selective activation of four quasi-equivalent C-H bonds in a specially designed nitrogen-containing polycyclic hydrocarbon (N-PH). Density functional theory calculations reveal that the adsorption of N-PH on Ag(100) differentiates the activity of the four ortho C(sp3) atoms in the N-heterocycles into two groups, suggesting a selective dehydrogenation, which is demonstrated by sequential-annealing experiments of N-PH/Ag(100). Further annealing leads to the formation of N-doped graphene nanoribbons with partial corannulene motifs, realized by the C-H bond activation process. Our work provides a route of designing precursor molecules with ortho C(sp3) atom in an N-heterocycle to realize surface-induced selective dehydrogenation in quasi-equivalent sites.
更多
查看译文
关键词
Chemical physics,Scanning probe microscopy,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要