Chrome Extension
WeChat Mini Program
Use on ChatGLM

Harringtonine: A More Effective Antagonist for Omicron Variant.

Biochemical pharmacology(2023)

Cited 0|Views51
No score
Abstract
Fusion with host cell membrane is the main mechanism of infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we propose that a new strategy to screen small-molecule antagonists blocking SARS-CoV-2 membrane fusion. Using cell membrane chromatography (CMC), we found that harringtonine (HT) simultaneously targeted SARS-CoV-2 S protein and host cell surface TMPRSS2 expressed by the host cell, and subsequently confirmed that HT can inhibit membrane fusion. HT effectively blocked SARS-CoV-2 original strain entry with the IC50 of 0.217 μM, while the IC50 in delta variant decreased to 0.101 μM, the IC50 in Omicron BA.1 variant was 0.042 μM. Due to high transmissibility and immune escape, Omicron subvariant BA.5 has become the dominant strain of the SARS-CoV-2 virus and led to escalating COVID-19 cases, however, against BA.5, HT showed a surprising effectiveness. The IC50 in Omicron BA.5 was even lower than 0.0019 μM. The above results revealed the effect of HT on Omicron is very significant. In summary, we characterize HT as a small-molecule antagonist by direct targeting on the Spike protein and TMPRSS2.
More
Translated text
Key words
SARS-CoV-2,Spike protein,Membrane fusion,Omicron variant,Harringtonine
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined