Topologically Regularized Multiple Instance Learning to Harness Data Scarcity

arxiv(2023)

引用 0|浏览24
暂无评分
摘要
In biomedical data analysis, Multiple Instance Learning (MIL) models have emerged as a powerful tool to classify patients' microscopy samples. However, the data-intensive requirement of these models poses a significant challenge in scenarios with scarce data availability, e.g., in rare diseases. We introduce a topological regularization term to MIL to mitigate this challenge. It provides a shape-preserving inductive bias that compels the encoder to maintain the essential geometrical-topological structure of input bags during projection into latent space. This enhances the performance and generalization of the MIL classifier regardless of the aggregation function, particularly for scarce training data. The effectiveness of our method is confirmed through experiments across a range of datasets, showing an average enhancement of 2.8 benchmarks, 15.3 biomedical datasets over the current state-of-the-art.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要