Tailoring Physical Properties of Crystals through Synthetic Temperature Control: A Case Study for new Polymorphic NbFeTe2 phases

Physical Review B(2024)

引用 0|浏览7
暂无评分
摘要
Growth parameters play a significant role in the crystal quality and physical properties of layered materials. Here we present a case study on a van der Waals magnetic NbFeTe2 material. Two different types of polymorphic NbFeTe2 phases, synthesized at different temperatures, display significantly different behaviors in crystal symmetry, electronic structure, electrical transport, and magnetism. While the phase synthesized at low temperature showing behavior consistent with previous reports, the new phase synthesized at high temperature, has completely different physical properties, such as metallic resistivity, long-range ferromagnetic order, anomalous Hall effect, negative magnetoresistance, and distinct electronic structures. Neutron diffraction reveals out-of-plane ferromagnetism below 70K, consistent with the electrical transport and magnetic susceptibility studies. Our work suggests that simply tuning synthetic parameters in a controlled manner could be an effective route to alter the physical properties of existing materials potentially unlocking new states of matter, or even discovering new materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要