Experience
Education
Bio
David Woodruff joined the algorithms and complexity group at IBM Almaden in 2007, after completing his PhD at MIT in Theoretical Computer Science. He is currently an Associate Professor of Computer Science at Carnegie Mellon University. His interests are in compressed sensing, communication, numerical linear algebra, sketching, and streaming.
s: Sketches for $\\ell_p$-Sampling Without Replacement","urls":["https:\u002F\u002Farxiv.org\u002Fabs\u002F2007.06744"],"versions":[{"id":"5f0ecf6991e011ead96652b8","sid":"2007.06744","src":"arxiv","year":2020}],"year":2020},{"authors":[{"id":"563201cd45cedb3399f8fb0e","name":"Debmalya Mandal"},{"id":"53f43a17dabfaee2a1d08c95","name":"Nisarg Shah"},{"id":"53f42adedabfaeb22f3de2f9","name":"David P. Woodruff"}],"doi":"10.1145\u002F3391403.3399510","id":"5f0993869fced0a24b63d04f","num_citation":4,"order":2,"pages":{"end":"813","start":"795"},"title":"Optimal Communication-Distortion Tradeoff in Voting","urls":["https:\u002F\u002Fdl.acm.org\u002Fdoi\u002Fabs\u002F10.1145\u002F3391403.3399510","https:\u002F\u002Fdblp.org\u002Frec\u002Fconf\u002Fsigecom\u002FMandalSW20","https:\u002F\u002Fdoi.org\u002F10.1145\u002F3391403.3399510"],"venue":{"info":{"name":"EC '20: The 21st ACM Conference on Economics and Computation\n\t\t Virtual Event\n\t\t Hungary\n\t\t July, 2020"}},"versions":[{"id":"5f0993869fced0a24b63d04f","sid":"10.1145\u002F3391403.3399510","src":"acm","vsid":"ec","year":2020},{"id":"5f1ab6ca91e011e1c7087e63","sid":"conf\u002Fsigecom\u002FMandalSW20","src":"dblp","vsid":"conf\u002Fsigecom","year":2020}],"year":2020},{"authors":[{"id":"53f42adedabfaeb22f3de2f9","name":"David P. Woodruff"},{"name":"Amir Zandieh"}],"id":"5f06e6c591e0117f54657c36","num_citation":0,"order":0,"pdf":"https:\u002F\u002Fstatic.aminer.cn\u002Fstorage\u002Fpdf\u002Farxiv\u002F20\u002F2007\u002F2007.03927.pdf","title":"Near Input Sparsity Time Kernel Embeddings via Adaptive Sampling","urls":["https:\u002F\u002Farxiv.org\u002Fabs\u002F2007.03927"],"versions":[{"id":"5f06e6c591e0117f54657c36","sid":"2007.03927","src":"arxiv","year":2020}],"year":2020},{"authors":[{"id":"544838a4dabfae87b7deb9c6","name":"Alexandr Andoni"},{"name":"Collin Burns"},{"id":"54450e5fdabfae862da02cbc","name":"Yi Li"},{"id":"53f43160dabfaee4dc74c2df","name":"Sepideh Mahabadi"},{"id":"53f42adedabfaeb22f3de2f9","name":"David P. Woodruff"}],"id":"5f05a41a91e011c57e3e8e7d","num_citation":0,"order":4,"pdf":"https:\u002F\u002Fstatic.aminer.cn\u002Fstorage\u002Fpdf\u002Farxiv\u002F20\u002F2007\u002F2007.03633.pdf","title":"Streaming Complexity of SVMs","urls":["https:\u002F\u002Farxiv.org\u002Fabs\u002F2007.03633"],"versions":[{"id":"5f05a41a91e011c57e3e8e7d","sid":"2007.03633","src":"arxiv","year":2020}],"year":2020},{"authors":[{"id":"53f42ec6dabfaee1c0a45771","name":"Shafi Goldwasser"},{"name":"Ofer Grossman"},{"name":"Sidhanth Mohanty"},{"id":"53f42adedabfaeb22f3de2f9","name":"David P. Woodruff"}],"doi":"10.4230\u002FLIPIcs.ITCS.2020.79","id":"5e15adcc3a55ac47ab5b0c13","num_citation":0,"order":3,"pdf":"https:\u002F\u002Fstatic.aminer.cn\u002Fstorage\u002Fpdf\u002Farxiv\u002F19\u002F1911\u002F1911.11368.pdf","title":"Pseudo-Deterministic Streaming.","urls":["https:\u002F\u002Fdblp.org\u002Frec\u002Fconf\u002Finnovations\u002FGoldwasserGMW20","https:\u002F\u002Fdoi.org\u002F10.4230\u002FLIPIcs.ITCS.2020.79","https:\u002F\u002Farxiv.org\u002Fabs\u002F1911.11368"],"venue":{"info":{"name":"ITCS"}},"versions":[{"id":"5e15adcc3a55ac47ab5b0c13","sid":"conf\u002Finnovations\u002FGoldwasserGMW20","src":"dblp","vsid":"conf\u002Finnovations","year":2020},{"id":"5dde4b463a55ac4c42972b91","sid":"1911.11368","src":"arxiv","year":2019}],"year":2020},{"authors":[{"name":"Hang Liao"},{"id":"5434277edabfaebba5848543","name":"Barak A. Pearlmutter"},{"id":"53f44c14dabfaeb22f4d767c","name":"Vamsi K. Potluru"},{"id":"53f42adedabfaeb22f3de2f9","name":"David P. Woodruff"}],"id":"5ef876df91e0115941835a8b","num_citation":0,"order":3,"pages":{"end":"4376","start":"4367"},"title":"Automatic Differentiation of Sketched Regression.","urls":["https:\u002F\u002Fdblp.org\u002Frec\u002Fconf\u002Faistats\u002FLiaoPPW20","http:\u002F\u002Fproceedings.mlr.press\u002Fv108\u002Fliao20a.html","http:\u002F\u002Fdblp.uni-trier.de\u002Fdb\u002Fconf\u002Faistats\u002Faistats2020.html#LiaoPPW20"],"venue":{"info":{"name":"AISTATS"}},"versions":[{"id":"5ef876df91e0115941835a8b","sid":"conf\u002Faistats\u002FLiaoPPW20","src":"dblp","vsid":"conf\u002Faistats","year":2020},{"id":"5fae6f45d4150a363ceef4a0","sid":"3037963118","src":"mag","vsid":"2622962978","year":2020}],"year":2020},{"authors":[{"name":"Agniva Chowdhury"},{"id":"53f42e78dabfaedce54d39c3","name":"Petros Drineas"},{"id":"53f42adedabfaeb22f3de2f9","name":"David P. Woodruff"},{"id":"5d415bd77390bff0db709ef0","name":"Samson Zhou"}],"id":"5ef3247a91e0110c353daa5b","num_citation":0,"order":2,"title":"Approximation Algorithms for Sparse Principal Component Analysis","urls":["https:\u002F\u002Farxiv.org\u002Fabs\u002F2006.12748"],"versions":[{"id":"5ef3247a91e0110c353daa5b","sid":"2006.12748","src":"arxiv","year":2020}],"year":2020},{"authors":[{"name":"Amir Zandieh"},{"id":"53f42adedabfaeb22f3de2f9","name":"David Woodruff"}],"id":"5ede0553e06a4c1b26a84209","num_citation":0,"order":1,"pdf":"https:\u002F\u002Fstatic.aminer.cn\u002Fstorage\u002Fpdf\u002Ficml\u002F20\u002F6331-Paper.pdf","title":"Near Input Sparsity Time Kernel Embeddings via Adaptive Sampling","urls":["https:\u002F\u002Ficml.cc\u002FConferences\u002F2020\u002FAcceptedPapersInitial","https:\u002F\u002Ficml.cc\u002FConferences\u002F2020\u002FAcceptedPapersInitial#1025"],"venue":{"info":{"name":"international conference on machine learning"}},"versions":[{"id":"5ede0553e06a4c1b26a84209","sid":"icml2020#1025","src":"conf_icml","year":2020},{"id":"5fae6d48d4150a363ceb506a","sid":"3034322278","src":"mag","vsid":"1180662882","year":2020}],"year":2020},{"authors":[{"name":"Omri Ben-Eliezer"},{"name":"Rajesh Jayaram"},{"id":"53f42adedabfaeb22f3de2f9","name":"David P. Woodruff"},{"id":"53f4d0c6dabfaeedd277e67d","name":"Eylon Yogev"}],"doi":"10.1145\u002F3375395.3387658","id":"5ed384dd9fced0a24b6570ca","num_citation":2,"order":2,"pages":{"end":"80","start":"63"},"pdf":"https:\u002F\u002Fstatic.aminer.cn\u002Fstorage\u002Fpdf\u002Farxiv\u002F20\u002F2003\u002F2003.14265.pdf","title":"A Framework for Adversarially Robust Streaming Algorithms","urls":["https:\u002F\u002Fdl.acm.org\u002Fdoi\u002Fabs\u002F10.1145\u002F3375395.3387658","https:\u002F\u002Fdblp.org\u002Frec\u002Fconf\u002Fpods\u002FBen-EliezerJWY20","https:\u002F\u002Fdoi.org\u002F10.1145\u002F3375395.3387658","https:\u002F\u002Farxiv.org\u002Fabs\u002F2003.14265","https:\u002F\u002Fdblp.uni-trier.de\u002Fdb\u002Fjournals\u002Fcorr\u002Fcorr2003.html#abs-2003-14265","https:\u002F\u002Farxiv.org\u002Fpdf\u002F2003.14265"],"venue":{"info":{"name":"SIGMOD\u002FPODS '20: International Conference on Management of Data\n\t\t Portland\n\t\t OR\n\t\t USA\n\t\t June, 2020"}},"versions":[{"id":"5ed384dd9fced0a24b6570ca","sid":"10.1145\u002F3375395.3387658","src":"acm","vsid":"mod","year":2020},{"id":"5edcbb9d91e0110f1d6db43b","sid":"conf\u002Fpods\u002FBen-EliezerJWY20","src":"dblp","vsid":"conf\u002Fpods","year":2020},{"id":"5ef5c77891e011b29a697a56","sid":"2003.14265","src":"arxiv","year":2020},{"id":"5fae6b6dd4150a363ce7df5c","sid":"3031693517","src":"mag","vsid":"1184151122","year":2020}],"year":2020},{"authors":[{"name":"Rajesh Jayaram"},{"id":"53f42adedabfaeb22f3de2f9","name":"David P. Woodruff"},{"id":"545924f5dabfaeb0fe31d8fe","name":"Qiuyi Zhang"}],"doi":"","id":"5e5e18b593d709897ce29901","num_citation":0,"order":1,"pages":{"end":"","start":""},"pdf":"https:\u002F\u002Fstatic.aminer.cn\u002Fupload\u002Fpdf\u002Fprogram\u002F5e5e18b593d709897ce29901_0.pdf","title":"Span Recovery for Deep Neural Networks with Applications to Input Obfuscation","urls":["https:\u002F\u002Fopenreview.net\u002Fforum?id=B1guLAVFDB","https:\u002F\u002Fopenreview.net\u002Fpdf?id=B1guLAVFDB","https:\u002F\u002Fdblp.org\u002Frec\u002Fconf\u002Ficlr\u002FJayaramWZ20","https:\u002F\u002Farxiv.org\u002Fabs\u002F2002.08202"],"venue":{"info":{"name":"ICLR"},"issue":"","volume":""},"versions":[{"id":"5e5e18b593d709897ce29901","sid":"2995400130","src":"mag","vsid":"2584161585","year":2020},{"id":"5eb52f5791e01138ffc2fcc3","sid":"conf\u002Ficlr\u002FJayaramWZ20","src":"dblp","vsid":"conf\u002Ficlr","year":2020},{"id":"5e4e5ac53a55ac305df4b6be","sid":"2002.08202","src":"arxiv","year":2020}],"year":2020},{"authors":[{"id":"53f43160dabfaee4dc74c2df","name":"Mahabadi Sepideh"},{"name":"Razenshteyn Ilya"},{"id":"53f42adedabfaeb22f3de2f9","name":"Woodruff David P."},{"id":"5d415bd77390bff0db709ef0","name":"Zhou Samson"}],"doi":"10.1145\u002F3357713.3384331","id":"5ea2b8bf91e01167f5a89ca4","num_citation":0,"order":2,"pages":{"end":"1264","start":"1251"},"pdf":"https:\u002F\u002Fstatic.aminer.cn\u002Fstorage\u002Fpdf\u002Farxiv\u002F20\u002F2004\u002F2004.10969.pdf","title":"Non-Adaptive Adaptive Sampling on Turnstile Streams","urls":["https:\u002F\u002Farxiv.org\u002Fabs\u002F2004.10969","https:\u002F\u002Fdl.acm.org\u002Fdoi\u002Fabs\u002F10.1145\u002F3357713.3384331","https:\u002F\u002Fdblp.org\u002Frec\u002Fconf\u002Fstoc\u002FMahabadiRWZ20","https:\u002F\u002Fdoi.org\u002F10.1145\u002F3357713.3384331","http:\u002F\u002Facm-stoc.org\u002Fstoc2020\u002Faccepted-papers.html#101","https:\u002F\u002Fdblp.uni-trier.de\u002Fdb\u002Fjournals\u002Fcorr\u002Fcorr2004.html#abs-2004-10969","https:\u002F\u002Fwww.microsoft.com\u002Fen-us\u002Fresearch\u002Fpublication\u002Fnon-adaptive-adaptive-sampling-on-turnstile-streams\u002F"],"venue":{"info":{"name":"STOC '20: 52nd Annual ACM SIGACT Symposium on Theory of Computing \n\t\t Chicago\n\t\t IL\n\t\t USA\n\t\t June, 2020"}},"versions":[{"id":"5ea2b8bf91e01167f5a89ca4","sid":"2004.10969","src":"arxiv","year":2020},{"id":"5ede11d39fced0a24bb2b592","sid":"10.1145\u002F3357713.3384331","src":"acm","vsid":"stoc","year":2020},{"id":"5ee2062791e0116d10fcd2ef","sid":"conf\u002Fstoc\u002FMahabadiRWZ20","src":"dblp","vsid":"conf\u002Fstoc","year":2020},{"id":"5fae6d53d4150a363ceb6691","sid":"3034414685","src":"mag","vsid":"1190910084","year":2020}],"year":2020},{"authors":[{"id":"53f7a2d1dabfae938c6c9652","name":"Song Zhao"},{"id":"53f42adedabfaeb22f3de2f9","name":"Woodruff David P."},{"name":"Zhong Peilin"}],"id":"5e9d72b391e0117173ad2b2c","num_citation":0,"order":1,"pdf":"https:\u002F\u002Fstatic.aminer.cn\u002Fstorage\u002Fpdf\u002Farxiv\u002F20\u002F2004\u002F2004.07986.pdf","title":"Average Case Column Subset Selection for Entrywise $\\ell_1$-Norm Loss","urls":["https:\u002F\u002Farxiv.org\u002Fabs\u002F2004.07986"],"versions":[{"id":"5e9d72b391e0117173ad2b2c","sid":"2004.07986","src":"arxiv","year":2020}],"year":2020},{"authors":[{"name":"Tanqiu Jiang"},{"id":"54450e5fdabfae862da02d34","name":"Yi Li"},{"name":"Honghao Lin"},{"name":"Yisong Ruan"},{"id":"53f42adedabfaeb22f3de2f9","name":"David P. Woodruff"}],"doi":"","id":"5e5e18d593d709897ce33822","num_citation":0,"order":4,"pages":{"end":"","start":""},"pdf":"https:\u002F\u002Fstatic.aminer.cn\u002Fupload\u002Fpdf\u002Fprogram\u002F5e5e18d593d709897ce33822_0.pdf","title":"Learning-Augmented Data Stream Algorithms","urls":["https:\u002F\u002Fopenreview.net\u002Fforum?id=HyxJ1xBYDH","https:\u002F\u002Fopenreview.net\u002Fpdf?id=HyxJ1xBYDH","https:\u002F\u002Fdblp.org\u002Frec\u002Fconf\u002Ficlr\u002FJiangLLRW20"],"venue":{"info":{"name":"ICLR"},"issue":"","volume":""},"versions":[{"id":"5e5e18d593d709897ce33822","sid":"2996022682","src":"mag","vsid":"2584161585","year":2020},{"id":"5eb52f5791e01138ffc2fcca","sid":"conf\u002Ficlr\u002FJiangLLRW20","src":"dblp","vsid":"conf\u002Ficlr","year":2020}],"year":2020}],"profilePubsTotal":264,"profilePatentsPage":1,"profilePatents":[],"profilePatentsTotal":0,"profilePatentsEnd":true,"profileProjectsPage":0,"profileProjects":null,"profileProjectsTotal":null,"newInfo":null,"checkDelPubs":[]}};