基本信息

浏览量：181

个人简介

Research interest(s)/area of expertise

Development and application of methods for exploring potential energy surfaces for chemical reactions using molecular orbital calculations

Research

With theoretical calculations it is possible to investigate details of chemical reactions and molecular properties that are often difficult to study experimentally. Molecular orbital computations can be used to explore potential energy surfaces for reactions, determine equilibrium geometries, locate transition states, follow reaction paths and choose between different proposed reaction mechanisms. Heats of formation, NMR spectra, vibrational spectra and a variety of molecular properties can also be calculated reliably by ab initio molecular orbital methods. These calculations are particularly useful for highly reactive molecules and unstable intermediates that are problematic to observe experimentally.

Our lab is involved in both the development and the application of new methods in ab initio molecular orbital (MO) theory. The development efforts are centered around analytical energy derivatives and the use of these derivatives to explore potential energy surfaces. Over the past 30 years, our group and others have developed efficient computer programs to calculate energy derivatives for a variety of levels of ab initio MO theory. Our current efforts include the development of new algorithms using derivatives for geometry optimization, searching for transition states and following reaction paths. We have devised efficient code to compute classical trajectories for molecular dynamics directly from the MO calculations. To aid in the study of radicals, we have developed spin projection methods to obtain more accurate energetics for open shell systems.

The remarkable advances in quantum chemical software and the rapid increase in the speed of computers have opened new realms of chemistry for investigation by ab initio molecular orbital methods. Many of our applications of quantum chemical calculations are in direct collaboration with experimental groups in order to maximize the benefits of our studies. In the area of bio-organic chemistry, we have been looking at oxidative damage to DNA with Cynthia Borrows (U. of Utah), specifically processes involving guanine oxidation. In the area of materials and inorganic chemistry, we have a long standing association with the Winter group investigating precursors for chemical vapor deposition (CVD) and atomic layer deposition (ALD). We are working closely with the Verani and Endicott groups on solar energy conversion and water splitting catalysts. Within physical chemistry, we are studying reaction path branching by ab initio molecular dynamics (AIMD) methods. In collaboration with Wen Li, we are using AIMD to investigate the behavior of molecules in intense laser fields.

Development and application of methods for exploring potential energy surfaces for chemical reactions using molecular orbital calculations

Research

With theoretical calculations it is possible to investigate details of chemical reactions and molecular properties that are often difficult to study experimentally. Molecular orbital computations can be used to explore potential energy surfaces for reactions, determine equilibrium geometries, locate transition states, follow reaction paths and choose between different proposed reaction mechanisms. Heats of formation, NMR spectra, vibrational spectra and a variety of molecular properties can also be calculated reliably by ab initio molecular orbital methods. These calculations are particularly useful for highly reactive molecules and unstable intermediates that are problematic to observe experimentally.

Our lab is involved in both the development and the application of new methods in ab initio molecular orbital (MO) theory. The development efforts are centered around analytical energy derivatives and the use of these derivatives to explore potential energy surfaces. Over the past 30 years, our group and others have developed efficient computer programs to calculate energy derivatives for a variety of levels of ab initio MO theory. Our current efforts include the development of new algorithms using derivatives for geometry optimization, searching for transition states and following reaction paths. We have devised efficient code to compute classical trajectories for molecular dynamics directly from the MO calculations. To aid in the study of radicals, we have developed spin projection methods to obtain more accurate energetics for open shell systems.

The remarkable advances in quantum chemical software and the rapid increase in the speed of computers have opened new realms of chemistry for investigation by ab initio molecular orbital methods. Many of our applications of quantum chemical calculations are in direct collaboration with experimental groups in order to maximize the benefits of our studies. In the area of bio-organic chemistry, we have been looking at oxidative damage to DNA with Cynthia Borrows (U. of Utah), specifically processes involving guanine oxidation. In the area of materials and inorganic chemistry, we have a long standing association with the Winter group investigating precursors for chemical vapor deposition (CVD) and atomic layer deposition (ALD). We are working closely with the Verani and Endicott groups on solar energy conversion and water splitting catalysts. Within physical chemistry, we are studying reaction path branching by ab initio molecular dynamics (AIMD) methods. In collaboration with Wen Li, we are using AIMD to investigate the behavior of molecules in intense laser fields.

研究兴趣

## 论文作者统计合作学者相似作者

排序

按年份排序按引用量排序

添加论文

查看全部

作者统计

合作学者

D-Core

- 合作者
- 学生
- 导师

数据免责声明

页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果，我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问，可以通过电子邮件方式联系我们：report@aminer.cn