基本信息
浏览量:8400
个人简介
Since age 15 or so, the main goal of professor Jürgen Schmidhuber has been to build a self-improving Artificial Intelligence (AI) smarter than himself, then retire. His lab's Deep Learning Neural Networks (such as LSTM) based on ideas published in the "Annus Mirabilis" 1990-1991 have revolutionised machine learning and AI. By the mid 2010s, they were on 3 billion devices, and used billions of times per day through users of the world's most valuable public companies, e.g., for greatly improved (CTC-based) speech recognition on all Android phones, greatly improved machine translation through Google Translate and Facebook (over 4 billion LSTM-based translations per day), Apple's Siri and Quicktype on all iPhones, the answers of Amazon's Alexa, and numerous other applications. In 2011, his team was the first to win official computer vision contests through deep neural nets, with superhuman performance. In 2012, they had the first deep NN to win a medical imaging contest (on cancer detection). This attracted enormous interest from industry. His research group also established the fields of metalearning, mathematically rigorous universal AI and recursive self-improvement in universal problem solvers that learn to learn (since 1987). In the 1990s, he introduced unsupervised adversarial neural networks that fight each other in a minimax game to achieve artificial curiosity etc. His formal theory of creativity & curiosity & fun explains art, science, music, and humor. He also generalized algorithmic information theory and the many-worlds theory of physics, and introduced the concept of Low-Complexity Art, the information age's extreme form of minimal art. He is recipient of numerous awards, author of over 350 peer-reviewed papers, and Chief Scientist of the company NNAISENSE, which aims at building the first practical general purpose AI. He is a frequent keynote speaker, and advising various governments on AI strategies.
研究兴趣
论文作者统计合作学者相似作者
排序
按年份排序按引用量排序合作者筛选
添加论文

作者统计
合作学者
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn