
views: 29
Jan Leike
Associate Research
Sign in to view more

Ego Network
D-Core
Research Interests
Author Statistics
Experience
Sign in to view more
Education
Sign in to view more
Bio
My current research direction centers around Recursive Reward Modeling, a scalable technique for training RL agents from human feedback that involves breaking the evaluation of individual tasks down recursively until they can be solved directly with reward modeling.
Papers36 papers
Sort
By YearBy Citation
international conference on learning representations, (2020)
IJCAI 2020, pp.1592-1600, (2020)
Bahdanau Dzmitry,Hill Felix,Leike Jan, Hughes Edward, Hosseini Arian,Kohli Pushmeet,Grefenstette Edward
ICLR, (2019)
neural information processing systems, pp.8011-8023, (2018)
Bibtex
arXiv: Artificial Intelligence, (2018)
arXiv: Artificial Intelligence, (2018)
Cited by9Bibtex
arXiv: Learning, (2018)
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), (2018)
arXiv: Learning, (2018)
IJCAI, (2017): 1403-1410
IJCAI, pp.4889-4893, (2017)
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), (2017)
Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A. Ortega, Tom Everitt, Andrew Lefrancq,Laurent Orseau,Shane Legg
CoRR, (2017)
neural information processing systems, (2017): 4302-4310
AISTATS, (2016)
Matthias Heizmann,Daniel Dietsch,Marius Greitschus,Jan Leike,Betim Musa, Claus Schätzle,Andreas Podelski
TACAS, pp.950-953, (2016)
UAI, (2016): 417-426
JMLR Workshop and Conference Proceedings, (2016): 1394-1402
Matthias Heizmann,Daniel Dietsch,Marius Greitschus,Jan Leike,Betim Musa, Claus Schätzle,Andreas Podelski
Proceedings of the 22nd International Conference on Tools and Algorithms for the Construction and An..., pp.950-953, (2016)
View All