views: 121
Information
Professor
Sign in to view more
Experience
Sign in to view more
Education
Sign in to view more
Bio
Our research contributions have been in several areas of biomaterials, biomolecular engineering, drug delivery, mathematics and simulations of biological and drug/tissue processes, engineering design of novel biological active entities, polymers and biomedical engineering. The multidisciplinary approach of his research in biomolecular engineering blends modern molecular and cellular biology with engineering to generate next-generation systems and devices, including bioMEMS with enhanced applicability, reliability, functionality, and longevity. The fundamental studies of his group have provided valuable results on biomaterials design and development, drug delivery systems and advanced, intelligent, feedback controlled biological systems.
Our group is known for our work on the preparation, characterization and evaluation of the behavior of compatible, crosslinked polymers (hydrogels), which have been used as biocompatible materials and in controlled release devices, especially in controlled delivery of drugs, peptides and proteins, development of novel biomaterials, biomedical transport phenomena, and biointerfacial problems. Our group has provided the fundamental basis for a rational development of intelligent systems. In addition, our work has led to a series of novel environmentally responsive controlled release systems, swelling protein delivery systems, a series of pH-sensitive devices for peptide delivery and a wide range of bio- and mucoadhesive systems. Other biomedical work of our group had dealt with understanding of transport of biological compounds in tissues, analysis of polymer/tissue interactions, and understanding of the behavior of biomembranes. Our polymer research has examined fundamental aspects of the thermodynamics of polymer networks in contact with penetrants, the conformational changes of networks under load or in the presence of a diluent, the anomalous transport of penetrants in glassy polymers, and the kinetics of fast UV-polymerization reactions.
Our group is known for our work on the preparation, characterization and evaluation of the behavior of compatible, crosslinked polymers (hydrogels), which have been used as biocompatible materials and in controlled release devices, especially in controlled delivery of drugs, peptides and proteins, development of novel biomaterials, biomedical transport phenomena, and biointerfacial problems. Our group has provided the fundamental basis for a rational development of intelligent systems. In addition, our work has led to a series of novel environmentally responsive controlled release systems, swelling protein delivery systems, a series of pH-sensitive devices for peptide delivery and a wide range of bio- and mucoadhesive systems. Other biomedical work of our group had dealt with understanding of transport of biological compounds in tissues, analysis of polymer/tissue interactions, and understanding of the behavior of biomembranes. Our polymer research has examined fundamental aspects of the thermodynamics of polymer networks in contact with penetrants, the conformational changes of networks under load or in the presence of a diluent, the anomalous transport of penetrants in glassy polymers, and the kinetics of fast UV-polymerization reactions.
Research Interests
Papers
Sort
By YearBy Citation
Add Paper

View All
Ego Network
D-Core
Co-Author
Author Statistics
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn