基本信息
浏览量:494

个人简介
My research interests are broadly in
Machine Learning Theory: Understanding the fundamental principles of machine learning, e.g., network capacity, optimization method and generalization ability, and providing insights for algorithms.
Self-Supervised Learning: Self-supervised learning aims to pre-train a powerful feature extractor through a self-supervised task using a large amount of unlabeled data, such that the learned image representations can be efficiently adapted to downstream tasks.
Few-Shot Learning: Few-shot learning is the problem of making predictions on new tasks containing only a few samples with supervised information.
Machine Learning Theory: Understanding the fundamental principles of machine learning, e.g., network capacity, optimization method and generalization ability, and providing insights for algorithms.
Self-Supervised Learning: Self-supervised learning aims to pre-train a powerful feature extractor through a self-supervised task using a large amount of unlabeled data, such that the learned image representations can be efficiently adapted to downstream tasks.
Few-Shot Learning: Few-shot learning is the problem of making predictions on new tasks containing only a few samples with supervised information.
研究兴趣
论文共 26 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
ICLR 2023 (2023)
引用0浏览0引用
0
0
CoRR (2023): 6448-6467
引用0浏览0EI引用
0
0
ICLR 2023 (2023)
引用0浏览0引用
0
0
CoRR (2023)
引用0浏览0EI引用
0
0
ICLR (2023)
引用0浏览0EI引用
0
0
CoRR (2023)
引用1浏览0EI引用
1
0
ICLR 2023 (2023)
引用0浏览0EI引用
0
0
arxiv(2022)
引用0浏览0引用
0
0
ICLR 2023 (2021)
引用41浏览0EI引用
41
0
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn