AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
The result shows the presence of structure based on the striazine rings, which is in accord with the energy loss spectroscopy and Fourier transform infrared spectroscopy analysis

Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine

Applied Physics A-materials Science & Processing, no. 2 (2009): 387-392

被引用282|浏览13
WOS SCOPUS
下载 PDF 全文
引用
微博一下

摘要

Graphitic carbon nitride (g-C3N4) has been synthesized via a two-step pyrolysis of melamine (C3H6N6) at 800°C for 2 h under vacuum conditions. X-ray diffraction (XRD) patterns strongly indicate that the synthesized sample is g-C3N4. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) morphologies indicate that t...更多

代码

数据

0
简介
  • Since it was theoretically predicted that the hardness of C3N4 phases (α-, β-, and cubic) might be comparable to or higher than that of diamond [1,2,3], great efforts have been made to synthesize these novel materials.
  • Their hardness, wear resistance, and low coefficient of friction are very attractive properties for industrial applications.
  • Ming et al discovered c-C3N4 at high-pressure and high-temperature conditions using g-C3N4 as initial materials [29]
重点内容
  • Since it was theoretically predicted that the hardness of C3N4 phases (α, β, and cubic) might be comparable to or higher than that of diamond [1,2,3], great efforts have been made to synthesize these novel materials
  • X-ray diffraction (XRD) was performed on a Rigaku-Dmax-Ra powder X-ray diffractometer with Cu Kα radiation (λ = 1.5418 Å)
  • The strongest sharp reflection peak at the position of 27.5° (d = 3.22 Å) matches the predicted (002) diffraction of g-C3N4 [30], which is very similar to the XRD patterns of g-C3N4 reported in the previous works [22,23,24]
  • The result shows the presence of structure based on the striazine rings, which is in accord with the energy loss spectroscopy (EELS) and Fourier transform infrared spectroscopy (FTIR) analysis
  • The luminescent characteristics probably depend on the π → π∗ transitions of the s-triazine ring systems
  • Such properties may be applied to light-emitting diodes [19]
结果
  • XRD was performed on a Rigaku-Dmax-Ra powder X-ray diffractometer with Cu Kα radiation (λ = 1.5418 Å).
  • The strongest sharp reflection peak at the position of 27.5° (d = 3.22 Å) matches the predicted (002) diffraction of g-C3N4 [30], which is very similar to the XRD patterns of g-C3N4 reported in the previous works [22,23,24].
  • Name Start BE Peak BE End BE Height Counts FWHM N1s 402.5
结论
  • The luminescent characteristics probably depend on the π → π∗ transitions of the s-triazine ring systems.
  • Such properties may be applied to light-emitting diodes [19]
总结
  • Introduction:

    Since it was theoretically predicted that the hardness of C3N4 phases (α-, β-, and cubic) might be comparable to or higher than that of diamond [1,2,3], great efforts have been made to synthesize these novel materials.
  • Their hardness, wear resistance, and low coefficient of friction are very attractive properties for industrial applications.
  • Ming et al discovered c-C3N4 at high-pressure and high-temperature conditions using g-C3N4 as initial materials [29]
  • Results:

    XRD was performed on a Rigaku-Dmax-Ra powder X-ray diffractometer with Cu Kα radiation (λ = 1.5418 Å).
  • The strongest sharp reflection peak at the position of 27.5° (d = 3.22 Å) matches the predicted (002) diffraction of g-C3N4 [30], which is very similar to the XRD patterns of g-C3N4 reported in the previous works [22,23,24].
  • Name Start BE Peak BE End BE Height Counts FWHM N1s 402.5
  • Conclusion:

    The luminescent characteristics probably depend on the π → π∗ transitions of the s-triazine ring systems.
  • Such properties may be applied to light-emitting diodes [19]
表格
  • Table1: Elemental composition of the samples obtained from CHN analysis
  • Table2: XPS analytic data of the sample
Download tables as Excel
基金
  • This work was supported financially by Natural Science Foundation of China (No 10304005, 50372023, 50334030) and National Basic Research Program of China (No 2005CB724400, 2001CB711201), and Research Fund for the Doctoral Program of Higher Education of China (20070183175)
引用论文
  • M.L. Cohen, Phys. Rev. B 32, 7988 (1985) 2. A.Y. Liu, M.L. Cohen, Science 245, 841 (1989) 3.
    Google ScholarLocate open access versionFindings
  • M.L. Cohen, Science 261, 307 (1993) 4.
    Google ScholarFindings
  • C. Niu, Y.Z. Lu, C.M. Lieber, Science 261, 334 (1993) 5.
    Google ScholarLocate open access versionFindings
  • Mater. 11, 1157 (2002) 6.
    Google ScholarFindings
  • A.A. Khawwam, C. Jama, P. Goudmand, O. Dessaux, A.E. Achari, P. Dhamelincourt, G. Patrat, Thin Solid Films 408, 15 (2002) 7.
    Google ScholarLocate open access versionFindings
  • J. Xu, X. Deng, J. Zhang, W. Lu, T. Ma, Thin Solid Films 390, 107 (2001) 8.
    Google ScholarLocate open access versionFindings
  • D. Li, X. Chu, S.C. Cheng, X.W. Lin, V.P. Dravid, Y.W. Chung, M.S. Wong, W.D. Sproul, Appl. Phys. Lett. 67, 203 (1995) 9.
    Google ScholarLocate open access versionFindings
  • Page, G.S.A.M. Theunissen, J. Vac. Sci. Technol. A 14, 56 (1996) 10.
    Google ScholarLocate open access versionFindings
  • K.G. Kreider, M.J. Tarlov, G.J. Gillen, G.E. Poirier, L.H. Robins, L.K. Ives, W.D. Bowers, R.B. Marinenko, D.T. Smith, J. Mater. Res. 10, 3079 (1995) 11.
    Google ScholarLocate open access versionFindings
  • K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Hansen, A.Y. Liu, I.C. Wu, Phys. Rev. B 49, 5034 (1994) 12.
    Google ScholarLocate open access versionFindings
  • Z.B. Zhou, R.Q. Cui, Q.J. Pang, G.M. Hadi, Z.M. Ding, W.Y. Li, Sol. Energy Mater. Sol. C 70, 487 (2001)
    Google ScholarLocate open access versionFindings
  • 13. P. Hammer, N.M. Victoria, F. Alvarez, J. Vac. Sci. Technol. A 18, 2277 (2000)
    Google ScholarLocate open access versionFindings
  • 14. M.R. Wixom, J. Am. Ceram. Soc. 73, 1973 (1990) 15. Lett. 268, 26 (1997) 16.
    Google ScholarLocate open access versionFindings
  • Sci. Lett. 9, 1376 (1990) 17.
    Google ScholarFindings
  • L. Maya, D.R. Cole, E.W. Hagamo, J. Am. Ceram. Soc. 74, 1686 (1991) 18.
    Google ScholarLocate open access versionFindings
  • J.Y. Wu, C.T. Kuo, P. Yang, J. Mater. Chem. Phys. 72, 245 (2001) 19.
    Google ScholarLocate open access versionFindings
  • A. Wei, D. Chen, N. Ke, W.Y. Cheung, S. Peng, S.P. Wong, J. Phys. D 31, 1522 (1998) 20.
    Google ScholarLocate open access versionFindings
  • A. Hoffman, I. Gouzman, R. Brener, Appl. Phys. Lett. 64, 845 (1994) 21.
    Google ScholarLocate open access versionFindings
  • Sci. Technol. A 15, 2983 (1997) 22.
    Google ScholarLocate open access versionFindings
  • H. Montigaud, B. Tanguy, G. Demazeau, Diam. Relat. Mater. 8, 1707 (1999) 23.
    Google ScholarLocate open access versionFindings
  • Y.J. Bai, B. Lu, Z.G. Liu, J. Cryst. Growth 247, 505 (2003) 24.
    Google ScholarLocate open access versionFindings
  • Phys. Lett. 380, 84 (2003) 25.
    Google ScholarFindings
  • H.A. Ma, X.P. Jia, L.X. Chen, P.W. Zhu, W.L. Guo, X.B. Guo, Y.D. Wang, S.Q. Li, G.T. Zou, G. Zhang, P. Bex, J. Phys. Condens. Matter. 14, 11269 (2002)
    Google ScholarLocate open access versionFindings
  • 26. Z.H. Zhang, K. Leinenweber, M. Bauer, L.A.J. Garvie, P.F. McMillan, G.H. Wolf, J. Am. Chem. Soc. 123, 7788 (2001)
    Google ScholarLocate open access versionFindings
  • 27. L.W. Yin, Y. Bando, M.S. Li, Y.X. Liu, Y.X. Qi, Adv. Mater. 15, 1840 (2003)
    Google ScholarLocate open access versionFindings
  • 28. C. Tang, D. Golberg, Y. Bando, F.F. Xu, B. Liu, Chem. Commun., 3050 (2003)
    Google ScholarLocate open access versionFindings
  • 29. L.C. Ming, P. Zinin, Y. Meng, X.R. Liu, S.M. Hong, Y. Xie, J. Appl. Phys. 99, 033520 (2006)
    Google ScholarLocate open access versionFindings
  • 30. S. Matsumoto, E.Q. Xie, F. Izumi, Diam. Relat. Mater. 8, 1175 (1999)
    Google ScholarLocate open access versionFindings
  • 31. M. Groenewolt, M. Antonietti, Adv. Mater. 17, 1789 (2005) 32. J. Ortega, O.F. Sankey, Phys. Rev. B 51, 2624 (1995) 33.
    Google ScholarLocate open access versionFindings
  • Y. Miyamoto, M.L. Cohen, S.G. Louie, Solid State Commun. 102, 605 (1997) 34.
    Google ScholarFindings
  • J.E. Lowther, Phys. Rev. B 59, 11683 (1999) 35.
    Google ScholarLocate open access versionFindings
  • 12, 3264 (2000) 36.
    Google ScholarFindings
  • J.L. Zimmerman, R. Williams, V.N. Khabashesku, J.L. Margrave, Nano Lett. 1, 731 (2001) 37.
    Google ScholarLocate open access versionFindings
  • J.H. Kaufman, S. Metin, D.D. Saperstein, Phys. Rev. B 39, 13053 (1989) 38.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
小科