AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
We present a survey of such relationships, which may be exact or approximate; they may involve the potential in three-dimensional space, along the axes between bonded atoms, at nuclei or on molecular surfaces

The fundamental nature and role of the electrostatic potential in atoms and molecules

Theoretical Chemistry Accounts, no. 3 (2002): 134-142

被引用291|浏览6
下载 PDF 全文
引用
微博一下

摘要

.   A variety of atomic and molecular properties can be expressed in terms of the electrostatic potential. These include energies, covalent and anionic radii, electronegativities (chemical potentials) and a variety of properties that depend upon noncovalent interactons. We present a survey of such relationships, which may be exact or ap...更多

代码

数据

简介
  • A variety of atomic and molecular properties can be expressed in terms of the electrostatic potential.
  • These include energies, covalent and anionic radii, electronegativities and a variety of properties that depend upon noncovalent interactons.
  • The electrostatic potential, which is rigorously related to the electronic density by Poisson’s equation, can be regarded as, effectively, another fundamental determinant of atomic and molecular properties.
  • The central role of the electronic density has further been emphasized by Bader and his colleagues, in their mathematically elegant theory of ‘‘atoms in molecules’’
重点内容
  • A variety of atomic and molecular properties can be expressed in terms of the electrostatic potential
  • Over a period of time, we have developed a quantitative approach, which is based upon a detailed characterization of the molecular surface electrostatic potential, VS(r), in terms of certain statistically defined quantities
  • We have focused successively upon several different aspects of the electrostatic potential: its distribution in three-dimensional space, V(r); its minima along the internuclear axes between bonded atoms, defined by the condition ÑV(rm)Æu 1⁄4 0; its values at the nuclei of atoms and molecules, V0 and V0,A; and its variation on molecular surfaces, VS(r)
  • The common theme has been to show the variety of atomic and molecular properties that can be related to the electrostatic potential, whether rigorously or approximately
  • Our objective has been to demonstrate that the electrostatic potential can be regarded as a fundamental factor in determining the natures and behavior of atoms and molecules
结果
  • From the Hellmann–Feynman theorem and showed that using Hartree–Fock V0 reduces the errors to about 2% [59, 62].
  • Where kA is a parameter that depends upon the atom, achieve an accuracy of 0.10% relative to the estimated exact energies [68, 84]
结论
  • The authors have focused successively upon several different aspects of the electrostatic potential: its distribution in three-dimensional space, V(r); its minima along the internuclear axes between bonded atoms, defined by the condition ÑV(rm)Æu 1⁄4 0; its values at the nuclei of atoms and molecules, V0 and V0,A; and its variation on molecular surfaces, VS(r).
  • The common theme has been to show the variety of atomic and molecular properties that can be related to the electrostatic potential, whether rigorously or approximately.
  • These range from intrinsic features to a wide array of properties that depend upon noncovalent interactions.
  • The authors' objective has been to demonstrate that the electrostatic potential can be regarded as a fundamental factor in determining the natures and behavior of atoms and molecules
表格
  • Table1: Covalent radii (A )
Download tables as Excel
基金
  • From the Hellmann–Feynman theorem and showed that using Hartree–Fock V0 reduces the errors to about 2% [59, 62]
  • Where kA is a parameter that depends upon the atom, achieve an accuracy of 0.10% relative to the estimated exact energies [68, 84]
引用论文
  • Hohenberg P, Kohn W (1964) Phys Rev B 136: 864 2. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York 3.
    Google ScholarLocate open access versionFindings
  • Kryachko ES, Ludena EV (1990) Energy density functional theory of many-electron systems. Kluwer, Dordrecht 4.
    Google ScholarFindings
  • Seminario JM, Politzer P (eds) (1995) Modern density functional theory: a tool for chemistry. Elsevier, Amsterdam 5.
    Google ScholarFindings
  • Parr RG, Yang W (1995) Annu Rev Phys Chem 46: 701 6. Seminario JM (ed) (1996) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam 7.
    Google ScholarLocate open access versionFindings
  • Kohn W, Sham LJ (1965) Phys Rev A 140: 1133 8. Springborg M (ed) (1997) Density-functional methods in chemistry and materials science. Wiley, New York 9.
    Google ScholarLocate open access versionFindings
  • Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York 10.
    Google ScholarFindings
  • Galvez FJ, Porras I (1991) Phys Rev A 44: 144 11.
    Google ScholarLocate open access versionFindings
  • Coalson RD, Beek TL (1998) In: Schleyer PvR (ed) Encyclopedia of computational chemistry, vol 3.
    Google ScholarLocate open access versionFindings
  • Sperber G (1971) Int J Quantum Chem 5: 189 13.
    Google ScholarLocate open access versionFindings
  • Weinstein H, Politzer P, Srebrenik S (1975) Theor Chim Acta 38: 159
    Google ScholarLocate open access versionFindings
  • 14. Simas AM, Sagar RP, Ku ACT, Smith VH Jr (1988) Can J Chem 66: 1923
    Google ScholarLocate open access versionFindings
  • 15. Angulo JC, Dehesa JS (1991) Phys Rev A 44: 1516 16. Angulo JC, Schmider H, Sagar RP, Smith VH Jr (1994) Phys
    Google ScholarLocate open access versionFindings
  • Angulo JC, Yanez RJ, Dehesa JS, Romera E (1996) Int J
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS (1996) In: Murray JS, Sen K (eds)
    Google ScholarFindings
  • Sen KD, Politzer P (1989) J Chem Phys 90: 4370 20.
    Google ScholarLocate open access versionFindings
  • Sen KD, Politzer P (1989) J Chem Phys 91: 5123 21.
    Google ScholarLocate open access versionFindings
  • Gadre SR, Shrivastava IH (1991) J Chem Phys 94: 4384 22.
    Google ScholarLocate open access versionFindings
  • Scrocco E, Tomasi J (1973) Top Curr Chem 42: 95 23.
    Google ScholarLocate open access versionFindings
  • Scrocco E, Tomasi J (1978) Adv Quantum Chem 11: 115 24.
    Google ScholarLocate open access versionFindings
  • Politzer P, Daiker KC (1981) In: Deb BM (ed) The force concept in chemistry. Van Nostrand Reinhold, New York, chap 6 25.
    Google ScholarFindings
  • Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York 26.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol.
    Google ScholarLocate open access versionFindings
  • Pathak RK, Gadre SR (1990) J Chem Phys 93: 1770 28.
    Google ScholarLocate open access versionFindings
  • Shirsat RN, Bapat SV, Gadre SR (1992) Chem Phys Lett 200: 373 29.
    Google ScholarLocate open access versionFindings
  • Gadre SR, Kulkarni SA, Shrivastava IH (1992) J Chem Phys 96: 5253 30.
    Google ScholarLocate open access versionFindings
  • Luque FJ, Orozco M, Bhadane PK, Gadre SR (1993) J Phys Chem 97: 9380 31.
    Google ScholarLocate open access versionFindings
  • Gadre SR, Bhadane PK, Pundlik SS, Pingale SS (1996) In: Murray JS, Sen K (eds) Molecular electrostatic potentials: concepts and applications. Elsevier, Amsterdam, chap 5 32.
    Google ScholarFindings
  • Bragg WL (1920) Philos Mag 40: 169 33.
    Google ScholarLocate open access versionFindings
  • Huggins ML (1926) Phys Rev 28: 1086 34.
    Google ScholarLocate open access versionFindings
  • Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca, NY 35.
    Google ScholarFindings
  • Sanderson RT (1960) Chemical periodicity. Reinhold, New York 36.
    Google ScholarFindings
  • Slater JC (1964) J Chem Phys 41: 3199 37. O’Keeffe M, Brese NE (1991) J Am Chem Soc 113: 3226 38.
    Google ScholarLocate open access versionFindings
  • Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry, 4th edn. HarperCollins, New York 39.
    Google ScholarFindings
  • Wiener JJM, Murray JS, Grice ME, Politzer P (1997) Mol Phys 90: 425 40.
    Google ScholarLocate open access versionFindings
  • Wiener JJM, Grice ME, Murray JS, Politzer P (1996) J Chem Phys 104: 5109 41.
    Google ScholarLocate open access versionFindings
  • Becke AD (1988) Phys Rev A 38: 3098 42.
    Google ScholarFindings
  • Lee C, Yang W, Parr RG (1988) Phys Rev B 37: 785 43.
    Google ScholarLocate open access versionFindings
  • Bader RFW, Beddall PM, Cade PE (1971) J Am Chem Soc 93: 3095 44.
    Google ScholarLocate open access versionFindings
  • Bader RFW (1975) Acc Chem Res 8: 34 45.
    Google ScholarLocate open access versionFindings
  • Bader RFW (1985) Acc Chem Res 18: 9 46.
    Google ScholarLocate open access versionFindings
  • Perrin CL (1991) J Am Chem Soc 113: 2865 47.
    Google ScholarLocate open access versionFindings
  • Chirlian LE, Francl MM (1987) J Comput Chem 8: 894 48.
    Google ScholarLocate open access versionFindings
  • Woods RJ, Khalil M, Pell W, Moffat SH, Smith VH Jr (1990) J Comp Chem 11: 297 49.
    Google ScholarLocate open access versionFindings
  • Williams DE (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2. VCH, New York, chap 6 50.
    Google ScholarLocate open access versionFindings
  • Politzer P, Parr RG, Murphy DR (1983) J Chem Phys 79: 3859 51.
    Google ScholarLocate open access versionFindings
  • Politzer P, Parr RG, Murphy DR (1985) Phys Rev B 31: 6809 52.
    Google ScholarLocate open access versionFindings
  • Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68: 3801 53.
    Google ScholarLocate open access versionFindings
  • Politzer P, Grice ME, Murray JS (2001) J Mol Struct (THEOCHEM) 549: 69 54.
    Google ScholarLocate open access versionFindings
  • Clementi E, Roetti C (1974) At Data Nucl Data Tables 14: 177 55.
    Google ScholarLocate open access versionFindings
  • Hellmann H (1937) Einfuhrung in die Quantenchemie. Deuticke, Leipzig 56.
    Google ScholarFindings
  • Feynman RP (1939) Phys Rev 56: 340
    Google ScholarLocate open access versionFindings
  • 57. Foldy LL (1951) Phys Rev 83: 397 58. Lowdin P-O (1959) J Mol Spectrosc 3: 46 59.
    Google ScholarLocate open access versionFindings
  • Fraga S (1964) Theor Chim Acta 2: 406 60.
    Google ScholarLocate open access versionFindings
  • Gaspar R (1967) Int J Quantum Chem 1: 139 61. Wilson EB Jr (1962) J Chem Phys 36: 2232 62.
    Google ScholarLocate open access versionFindings
  • Politzer P, Parr RG (1974) J Chem Phys 61: 4258 63.
    Google ScholarLocate open access versionFindings
  • Politzer P (2002) In: Brandas E, Kryachko E (eds) Fundamental perspectives in quantum chemistry: A tribute volume to the memory of Per-Olov Lowdin. Kluwer, Dordrecht, pp (in press) 64.
    Google ScholarFindings
  • Levine IN (2000) Quantum chemistry, 5th edn. Prentice-Hall, Upper Saddle River, NJ, chap 14 65.
    Google ScholarFindings
  • Cohen M (1979) J Phys B 12: L219 66.
    Google ScholarLocate open access versionFindings
  • Levy M, Clement SC, Tal Y (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York, chap 3 67.
    Google ScholarLocate open access versionFindings
  • Wang J, Smith VH Jr (1995) Phys Rev A 52: 1060 68.
    Google ScholarFindings
  • Politzer P, Lane P, Murray JS (2002) In: Sen KD (ed) Reviews in modern quantum chemistry: A celebration of the contributions of R.G. Parr. World Scientific, Singapore, pp (in press) 69.
    Google ScholarLocate open access versionFindings
  • Politzer P (1984) J Chem Phys 80: 380 70.
    Google ScholarLocate open access versionFindings
  • Thomas LH (1927) Proc Camb Philos Soc 23: 542 71.
    Google ScholarLocate open access versionFindings
  • Fermi E (1928) Z Phys 48: 73 72.
    Google ScholarLocate open access versionFindings
  • Lieb EH (1981) Rev Mod Phys 53: 603 73.
    Google ScholarLocate open access versionFindings
  • March NH (1982) J Phys Chem 86: 2262 74.
    Google ScholarLocate open access versionFindings
  • Lieb EH, Simon B (1973) Phys Rev Lett 31: 681 75.
    Google ScholarLocate open access versionFindings
  • Lieb EH, Simon B (1977) Adv Math 23: 22 76.
    Google ScholarLocate open access versionFindings
  • Milne EA (1927) Proc Camb Philos Soc 23: 794 77.
    Google ScholarLocate open access versionFindings
  • Politzer P (1979) J Chem Phys 70: 1067 78.
    Google ScholarLocate open access versionFindings
  • Levy M, Tal Y (1980) J Chem Phys 73: 5168 79.
    Google ScholarLocate open access versionFindings
  • Politzer P (1976) J Chem Phys 64: 4239 80.
    Google ScholarLocate open access versionFindings
  • Politzer P (1978) J Chem Phys 69: 491 81.
    Google ScholarLocate open access versionFindings
  • Politzer P, Abu-Awwad F (1998) Mol Phys 95: 681 82.
    Google ScholarLocate open access versionFindings
  • Becke AD (1993) J Chem Phys 98: 5648 83.
    Google ScholarLocate open access versionFindings
  • Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46: 6671 84.
    Google ScholarLocate open access versionFindings
  • Politzer P, Lane P, Concha MC (2002) Int J Quantum Chem (in press) 85.
    Google ScholarLocate open access versionFindings
  • Politzer P (1980) Isr J Chem 19: 224 86.
    Google ScholarLocate open access versionFindings
  • Politzer P (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York, chap 2 87.
    Google ScholarFindings
  • Politzer P (1987) In: March NH, Deb BM (eds) Single-particle density in physics and chemistry. Academic, New York, chap 3 88.
    Google ScholarFindings
  • Politzer P, Weinstein H (1979) J Chem Phys 71: 4218 89.
    Google ScholarLocate open access versionFindings
  • Politzer P, Parr RG, Murphy DR (1983) J Chem Phys 79: 3859 90.
    Google ScholarLocate open access versionFindings
  • Balbas LC, Alonso JA, Vega LA (1986) Z Phys D 1: 215 91.
    Google ScholarLocate open access versionFindings
  • Deb BM, Singh R, Sukumar N (1992) J Mol Struct (THEOCHEM) 259: 121 92.
    Google ScholarLocate open access versionFindings
  • Chou D, Weinstein H (1978) Tetrahedron 34: 275 93.
    Google ScholarFindings
  • Francl MM (1985) J Phys Chem 89: 428 94.
    Google ScholarLocate open access versionFindings
  • Orozco M, Luque FJ (1996) In: Murray JS, Sen K (eds) Molecular electrostatic potentials: concepts and applications. Elsevier, Amsterdam, chap 4 95.
    Google ScholarFindings
  • Gadre SR, Pingale SS (1998) J Am Chem Soc 120: 7056 96.
    Google ScholarLocate open access versionFindings
  • Brinck T, Murray JS, Politzer P (1993) Int J Quantum Chem 48: 73 97.
    Google ScholarLocate open access versionFindings
  • Murray JS, Politzer P (1998) In: Parkanyi C (ed.) Theoretical organic chemistry. Elsevier, Amsterdam, chap 7 98.
    Google ScholarFindings
  • Murray JS, Peralta-Inga Z, Politzer P, Ekanayake K, LeBreton P (2001) Int J Quantum Chem 83: 245 99.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem (in press) 100.
    Google ScholarLocate open access versionFindings
  • Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York 101.
    Google ScholarFindings
  • Hirschfelder JO (1967) In: Molecular forces. North-Holland, Amsterdam, p 73 102.
    Google ScholarFindings
  • Hunt KLC (1990) J Chem Phys 92: 1180 103. Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95: 829
    Google ScholarLocate open access versionFindings
  • 104. Politzer P, Laurence PR, Jayasuriya K (1985) Environ Health Perspect 61: 191
    Google ScholarLocate open access versionFindings
  • 105. Price SL (1996) J Chem Soc Faraday Trans 92: 2997 106. Murray JS, Politzer P (1998) In: Sapse A-M (ed) Molecular orbital calculations for biological systems. Oxford University Press, New York, chap 3 107.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS, Peralta-Inga Z (2001) Int J Quantum Chem 85: 676 108.
    Google ScholarLocate open access versionFindings
  • Connolly ML (1985) J Am Chem Soc 107: 1118 109.
    Google ScholarLocate open access versionFindings
  • Du Q, Arteca GA (1996) J Comput Chem 17: 1258 110.
    Google ScholarLocate open access versionFindings
  • Brickmann J, Exner T, Keil M, Marhofer R, Moeckel G (1998) In: Schleyer PvR (ed) Encyclopedia of computational chemisty, vol 3.
    Google ScholarLocate open access versionFindings
  • Connolly ML (1998) In: Schleyer PvR (ed) Encyclopedia of computational chemistry, vol 3.
    Google ScholarLocate open access versionFindings
  • Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109: 7968 113.
    Google ScholarLocate open access versionFindings
  • Murray JS, Brinck T, Grice ME, Politzer P (1992) J Mol Struct (THEOCHEM) 256: 29 114.
    Google ScholarLocate open access versionFindings
  • Sharp KA, Honig B (1990) Annu Rev Biophys Biophys Chem 19: 301 115.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS (2002) In: Pollenaere JP, Bultinck P, De Winter H, Langenaeker W (eds) Computational medicinal chemistry and drug discovery. Dekker, New York, pp (in press) 116.
    Google ScholarLocate open access versionFindings
  • Brinck T, Murray JS, Politzer P (1992) Mol Phys 76: 609 117.
    Google ScholarLocate open access versionFindings
  • Murray JS, Brinck T, Lane P, Paulsen K, Politzer P (1994) J Mol Struct (THEOCHEM) 307: 55
    Google ScholarLocate open access versionFindings
  • 118. Murray JS, Lane P, Brinck T, Politzer P (1993) J Phys Chem 97: 5144
    Google ScholarLocate open access versionFindings
  • 119. Murray JS, Lane P, Brinck T, Paulsen K, Grice ME, Politzer P (1993) J Phys Chem 97: 9369
    Google ScholarLocate open access versionFindings
  • 120. Brinck T, Murray JS, Politzer P (1993) J Org Chem 58: 7070 121. Murray JS, Politzer P (1994) In: Murray JS, Politzer P (eds)
    Google ScholarLocate open access versionFindings
  • Murray JS, Brinck T, Politzer P (1996) Chem Phys 204: 289 123.
    Google ScholarLocate open access versionFindings
  • Murray JS, Lane P, Politzer P (1998) Mol Phys 93: 187 124.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS (1999) Trends Chem Phys 7: 157 125.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS (2002) In: Kubli-Garfias C (ed) Recent research developments in biological applications of quantum chemistry theory. Research Signpost, Trivandrum, India, pp (in press) 126.
    Google ScholarLocate open access versionFindings
  • Murray JS, Politzer P (1998) J Mol Struct (THEOCHEM) 425: 107 127.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS (2001) Fluid Phase Equilib 185: 129 128.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS, Grice ME, DeSalvo M, Miller E (1997) Mol Phys 91: 923 129.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS, Abu-Awwad F (2000) Int J Quantum Chem 76: 643 130.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS, Brinck T, Lane P (1995) In: Nelson JO, Karu AE, Wong RB (eds) Immunoanalysis of agrochemicals: emerging technologies. American Chemical Society, Washington, chap 8 131.
    Google ScholarLocate open access versionFindings
  • Politzer P, Murray JS, Concha MC, Brinck T (1993) J Mol Struct (THEOCHEM) 281: 107
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科