Comparison of two nitroxide labile esters for delivering electron paramagnetic resonance probes into mouse brain.

Journal of Pharmaceutical Sciences(2010)

引用 11|浏览10
暂无评分
摘要
In vivo quantitation of O2 in brain has been hindered by a lack of suitable imaging modalities. Development of low-frequency electron paramagnetic resonance (EPR) spectrometers that can detect free radicals in animals in real time makes it feasible to image paramagnetic oximetry probes such as nitroxides in brain tissue. We have shown that masking the carboxyl group of 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 1) as an esterase-labile acetoxymethyl ester yields 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 2). Nitroxide 2 can cross the blood-brain barrier and is then hydrolyzed in situ by esterases to regenerate nitroxide 1, which becomes entrapped in brain tissue. Seeking to improve the loading of nitroxides into brain, we synthesized the more lipophilic pentanoyloxymethyl ester, 3-pentanoyloxymethoxycarbonyl-2,2,5,5-tetramethyl-1- pyrrolidinyloxyl (nitroxide 3). We report that the higher lipophilicity of nitroxide 3 does not significantly increase its ability to generate EPR signals in the mouse brain. Therefore, irrespective of whether nitroxide 2 or 3 was injected, similar levels of nitroxide were entrapped in brain tissue. These findings suggest that nitroxides 2 and 3 perform comparably well as proimaging agents for measuring O2 distribution in brain.
更多
查看译文
关键词
pharmacokinetics/pharmacodynamics,blood-brain barrier,membrane transport,CNS,site-specific delivery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要