AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
The experiments disclosed in this study show that the coadsorption of K-19 sensitizer with 4-guanidinobutyric acid onto nanocrystalline TiO2 films remarkably increases the photovoltage without suffering significant current penalty, enhancing the total power conversion efficiency

Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells.

JOURNAL OF PHYSICAL CHEMISTRY B, no. 46 (2005): 21818-21824

被引用287|浏览12
WOS
下载 PDF 全文
引用
微博一下

摘要

Dye-sensitized solar cells based on nanocrystalline TiO2 have been fabricated with an amphiphilic ruthenium sensitizer [Ru (4,4'-dicarboxylic acid-2,2'-bipyridine) (4,4'-bis(p-hexyloxystyryl)-2,2'-bipyridine)(NCS)(2)], coded as K-19, and 4-guanidinobutyric acid (GBA) as coadsorbent. The cells showed a similar to 50 mV increase in open-cir...更多

代码

数据

0
简介
  • The success of dye-sensitized solar cells (DSCs) has increasingly fostered scientific and industrial research on the photovoltaic properties of wide band gap oxides, mainly TiO2-based, solar cells during the past years.[1,2,3] Unlike conventional p-n junction solar devices, a DSC employs interconnected inorganic semiconductor nanocrystals to form a “bulk” junction with a huge surface area at the semiconductor/electrolyte interface and, provides sufficient anchoring sites for sensitizers to attain effective light harvesting and energy conversion.
  • Previous results showed that trapping is about 3 orders faster than detrapping, so most photoinjected electrons are located in trap states.[7,8] The source of recombination includes the recapture of injected electrons in these traps by the oxidized sensitizer (S+) anchored on the TiO2 surface (3) or back reaction with the oxidized component of the redox couple present in the electrolyte, I3- (4).
  • Apart from the very large area of the junction, the recombination is favored by
重点内容
  • The success of dye-sensitized solar cells (DSCs) has increasingly fostered scientific and industrial research on the photovoltaic properties of wide band gap oxides, mainly TiO2-based, solar cells during the past years.[1,2,3] Unlike conventional p-n junction solar devices, a DSC employs interconnected inorganic semiconductor nanocrystals to form a “bulk” junction with a huge surface area at the semiconductor/electrolyte interface and, provides sufficient anchoring sites for sensitizers to attain effective light harvesting and energy conversion
  • The peaks located at 1538 and 1429 cm-1 are ascribed to the aromatic modes of bipyridyl, while the broad band centered at 3440 cm-1 is due to adsorbed water, presumably from the dye solution because the TiO2 film is heated prior to staining
  • Spectrum b was measured with electrode B, which was stained from the solution consisting of K-19 sensitizer and guanidinobutyric acid (GBA) at equal concentrations
  • The fact that the intensity of this peak for K-19 showed a decrease by about 25% indicates that 1/4 of the dye has been replaced by GBA during coadsorption
  • The experiments disclosed in this study show that the coadsorption of K-19 sensitizer with 4-guanidinobutyric acid onto nanocrystalline TiO2 films remarkably increases the photovoltage without suffering significant current penalty, enhancing the total power conversion efficiency
  • The spectral output of the lamp was matched in the region of 350-750 nm with the aid of a Schott K113 Tempax sunlight filter (Prazisions Glas & Optik GmbH, Germany) so as to reduce the mismatch between the simulated and true solar spectra to less than 2%
  • Results from cyclic voltammetry, electrochemical impedance spectroscopy, and photovoltage transient measurements demonstrate that this increase in photovoltage is generated from the negative shift of the quasi-Fermi level of TiO2 nanocrystals, as well as the inhibition of charge transfer from electrons in TiO2 to the triiodide in the electrolyte primarily resulting from the shielding of surface traps due to the addition of GBA as a dye coadsorbent
结果
  • Results and Discussion

    Figure 2 shows the attenuated total reflectance FTIR (ATR-

    FTIR) spectra of nanoporous TiO2 electrode A and electrode B with typical peaks of K-19 sensitizer as the authors have reported before.[17].
  • The peaks located at 1538 and 1429 cm-1 are ascribed to the aromatic modes of bipyridyl, while the broad band centered at 3440 cm-1 is due to adsorbed water, presumably from the dye solution because the TiO2 film is heated prior to staining.
  • It is well established that the characteristic peak of the thiocyanato group at 2103 cm-1 is a sensitive measure of the adsorbed amount of sensitizer.[6] The fact that the intensity of this peak for K-19 showed a decrease by about 25% indicates that 1/4 of the dye has been replaced by GBA during coadsorption.
  • In comparison with its counterpart resulting from the pure K-19
结论
  • The experiments disclosed in this study show that the coadsorption of K-19 sensitizer with 4-guanidinobutyric acid onto nanocrystalline TiO2 films remarkably increases the photovoltage without suffering significant current penalty, enhancing the total power conversion efficiency.
  • The device showed a long-term stability exhibiting approximately 8% power conversion efficiency under the dual stress of both thermal aging and light soaking.
  • Studies are underway to optimize the chain length and the structure of this type of coadsorbent for further improvement of cell performance
表格
  • Table1: Current/Voltage Parameters of DSCs (Device A and Device B)
Download tables as Excel
基金
  • The Swiss Science Foundation, the Swiss Federal Office for Energy (OFEN), the European Office of U.S Air Force under Contract No F6177500-C0003, and the Swiss Commission of Technology and Innovation (CTI) under contract no. 7019.1 NMS-NM have supported this work
引用论文
  • (1) O’Regan, B.; Gratzel, M. Nature 1991, 353, 737.
    Google ScholarLocate open access versionFindings
  • (2) Gratzel, M. Nature 2001, 414, 338.
    Google ScholarLocate open access versionFindings
  • (3) Hagfeld, A.; Gratzel, M. Chem. ReV. 1995, 95, 49.
    Google ScholarLocate open access versionFindings
  • (4) Gratzel, M. J. Photochem. Photobiol., A 2004, 164, 3.
    Google ScholarLocate open access versionFindings
  • (5) Gratzel, M. Chem. Lett. 2005, 34, 8.
    Google ScholarFindings
  • (6) Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M. Appl. Phys. Lett. 2005, 86, 123508.
    Google ScholarLocate open access versionFindings
  • (7) Fischer, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. J. Phys. Chem. B 2000, 104, 949.
    Google ScholarLocate open access versionFindings
  • (8) Shkrob I. A.; Sauer, M. C. J. Phys. Chem. B 2004, 108, 12497.
    Google ScholarLocate open access versionFindings
  • (9) Tennakone, K.; Perera, V. P. S.; Kottegoda, I. R. M.; De Silva, L. A. A.; Kumara, G.; Konno, A. J. Electron. Mater. 2001, 30, 992.
    Google ScholarFindings
  • (10) Gregg, B. A.; Pichot, F.; Ferrere, S.; Fields, C. L. J. Phys. Chem. B 2001, 105, 1422.
    Google ScholarLocate open access versionFindings
  • (11) Kumara, G.; Tennakone, K.; Perera, V. P. S.; Konno, A.; Kaneko, S.; Okuya, M. J. Phys. D: Appl. Phys. 2001, 34, 868.
    Google ScholarLocate open access versionFindings
  • (12) Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A. Chem. Commun. 2000, 2231.
    Google ScholarLocate open access versionFindings
  • (13) Chappel, S.; Chen, S. G.; Zaban, A. Langmuir 2002, 18, 3336.
    Google ScholarLocate open access versionFindings
  • (14) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125, 475.
    Google ScholarLocate open access versionFindings
  • (15) Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J.-E.; Gratzel, M. AdV. Mater. 2003, 15, 2101.
    Google ScholarLocate open access versionFindings
  • (16) Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; HumphryBaker, R.; Gratzel, M. J. Phys. Chem. B 2003, 107, 14336.
    Google ScholarLocate open access versionFindings
  • (17) Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 808.
    Google ScholarLocate open access versionFindings
  • (18) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Gratzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.
    Google ScholarLocate open access versionFindings
  • (19) Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Electrochim. Acta 2002, 47, 4213.
    Google ScholarLocate open access versionFindings
  • (20) Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360.
    Google ScholarLocate open access versionFindings
  • (21) Hauch, A.; Georg, A. Electrochim. Acta 2001, 46, 3457.
    Google ScholarLocate open access versionFindings
  • (22) Zaban, A.; Meier, A.; Gregg, B. A. J. Phys. Chem. B 1997, 101, 7985.
    Google ScholarLocate open access versionFindings
  • (23) Schwarzburg, K.; Willig, F. J. Phys. Chem. B 2003, 107, 3552.
    Google ScholarLocate open access versionFindings
  • (24) Bisquert, J. J. Phys. Chem. B 2002, 106, 325.
    Google ScholarLocate open access versionFindings
  • (25) Fabregat-Santiago, F.; Garcia-Canadas, J.; Palomares, E.; Clifford, J. N.; Haque, S. A.; Durrant, J. R.; Garcia-Belmonte, G.; Bisquert, J. J. Appl. Phys. 2004, 96, 6903.
    Google ScholarLocate open access versionFindings
  • (26) Pitarch, A.; Garcia-Belmonte, G.; Mora-Sero, I.; Bisquert, J. Phys. Chem. Chem. Phys. 2004, 6, 2983.
    Google ScholarLocate open access versionFindings
  • (27) Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo, G.; Hagfeldt, A. Sol. Energy Mater. Sol. Cells 2005, 87, 117.
    Google ScholarLocate open access versionFindings
  • (28) Wang, Q.; Moser, J.; Gratzel, M. J. Phys. Chem. B 2005, 109, 14945.
    Google ScholarLocate open access versionFindings
  • (29) O’Regan, B. C.; Lenzmann, F. J. Phys. Chem. B 2004, 108, 4342.
    Google ScholarLocate open access versionFindings
  • (30) O’Regan, B. C.; Scully, S.; Mayer, A. C.; Palomares, E.; Durrant, J. J. Phys. Chem. B 2005, 109, 4616.
    Google ScholarLocate open access versionFindings
  • (31) Moser, J.; Punchihewa, S.; Infelta, P. P.; Gratzel, M. Langmuir 1991, 7, 3012.
    Google ScholarLocate open access versionFindings
  • (32) Wang, Q.; Zakeeruddin, S. M.; Cremer, J.; Bauerle, P.; HumphryBaker, R.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 5706.
    Google ScholarLocate open access versionFindings
  • (33) Fabregat-Santiago, F.; Mora-Sero, I.; Garcia-Belmonte, G.; Bisquert, J. J. Phys. Chem. B 2003, 107, 758.
    Google ScholarLocate open access versionFindings
  • (34) Van de Lagemaat, J.; Park, N.-G.; Frank, A. J. J. Phys. Chem. B 2000, 104, 2044.
    Google ScholarLocate open access versionFindings
  • (35) Schlichthorl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys. Chem. B 1997, 101, 8141.
    Google ScholarLocate open access versionFindings
  • (36) Willis, R. L.; Olson, C.; O’Regan, B.; Lutz, T.; Nelson, J.; Durrant, J. R. J. Phys. Chem. B 2002, 106, 7605.
    Google ScholarLocate open access versionFindings
  • (37) Duffy, N. W.; Peter, L. M.; Rajapakse, R. M. G.; Wijayantha, K. G. U. Electrochem. Commun. 2000, 2, 658.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科