Bayesian Policy Gradient Algorithms
NIPS(2006)
摘要
Policy gradient methods are reinforcement learning algorithms that adapt a param- eterized policy by following a performance gradient estimate. Conventional pol- icy gradient methods use Monte-Carlo techniques to estimate this gradient. Since Monte Carlo methods tend to have high variance, a large number of samples is required, resulting in slow convergence. In this paper, we propose a Bayesian framework that models the policy gradient as a Gaussian process. This reduces the number of samples needed to obtain accurate gradient estimates. Moreover, estimates of the natural gradient as well as a measure of the uncertainty in the gradient estimates are provided at little extra cost.
更多查看译文
关键词
monte carlo technique,reinforcement learning,monte carlo method,gaussian process,gradient method
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn