AI helps you reading Science

AI generates interpretation videos

AI extracts and analyses the key points of the paper to generate videos automatically


pub
Go Generating

AI Traceability

AI parses the academic lineage of this thesis


Master Reading Tree
Generate MRT

AI Insight

AI extracts a summary of this paper


Weibo:
This chapter describes the characteristics of the microfluidic environment and the peculiar fluid behavior at the microscale

Micromixing within microfluidic devices.

Topics in Current Chemistry-Series, (2011): 27-68

Cited by: 283|Views9
WOS

Abstract

Micromixing is a crucial process within microfluidic systems such as micro total analysis systems (mu TAS). A state-of-art review on microstructured mixing devices and their mixing phenomena is given. The review first presents an overview of the characteristics of fluidic behavior at the microscale and their implications in microfluidic m...More

Code:

Data:

0
Introduction
  • Introduction and Outline

    Over the past two decades, lab-on-a-chip (LOC) technologies have driven considerable progress in the development of microsystems, for chemical, biological, and medical applications.
  • The miniaturized systems, designed for the above cited applications, are generally implemented with a microscale mixer to provide an intimate contact between the reagent molecules for interactions/chemical reactions.
  • Beside their integration in more complex micro total analysis systems [28], microscale mixers could work as stand-alone devices for applications where a superior control and a scaling-down of the mixing process are required.
Highlights
  • Introduction and Outline

    Over the past two decades, lab-on-a-chip (LOC) technologies have driven considerable progress in the development of microsystems, for chemical, biological, and medical applications
  • LOC technology has been applied in a wide range of processes such as nanoparticle crystallization [1, 2], extraction [3,4,5], polymerization [6,7,8,9], organic synthesis [10,11,12], enzyme assay [13, 14], protein folding [15], biological screening [16, 17],analytical assay [18,19,20], cell analysis [21, 22], bioprocess optimization [23, 24], clinical diagnostics [25, 26], and drug delivery studies [27]
  • In order to better understand the rationale behind the design of the microfluidic mixers reported in the literature, Sect. 2 will discuss the unique physical characteristics and theory of the microfluidic environment and their implications in the context of mixing
  • This chapter describes the characteristics of the microfluidic environment and the peculiar fluid behavior at the microscale
  • Among the different features of fluid at the microscale, one of the most relevant to mixing applications is the omnipresence of laminar flow where mixing can be dominantly accomplished by molecular diffusion
  • This apparent disadvantage coupled with the reduced dimension of microfluidic devices has been leveraged to provide faster and controllable mixing
Results
  • CGM showed a mixing performance over 50% better than the classic SGM for Re ranging from 1 to 100 as a result of the intense transverse transport induced in the fluids [123].
  • The author demonstrate 46% better mixing indices at the same longitudinal distance when compared with the SHM mixer
Conclusion
  • Research on microfluidics and mTAS has been progressing rapidly in the last two decades.
  • Among the different features of fluid at the microscale, one of the most relevant to mixing applications is the omnipresence of laminar flow where mixing can be dominantly accomplished by molecular diffusion.
  • This apparent disadvantage coupled with the reduced dimension of microfluidic devices has been leveraged to provide faster and controllable mixing.
  • Design and characterization of various microfluidic mixers have been reported, and their operation conditions and implications for mixing at microscale have been discussed
Summary
  • Introduction:

    Introduction and Outline

    Over the past two decades, lab-on-a-chip (LOC) technologies have driven considerable progress in the development of microsystems, for chemical, biological, and medical applications.
  • The miniaturized systems, designed for the above cited applications, are generally implemented with a microscale mixer to provide an intimate contact between the reagent molecules for interactions/chemical reactions.
  • Beside their integration in more complex micro total analysis systems [28], microscale mixers could work as stand-alone devices for applications where a superior control and a scaling-down of the mixing process are required.
  • Results:

    CGM showed a mixing performance over 50% better than the classic SGM for Re ranging from 1 to 100 as a result of the intense transverse transport induced in the fluids [123].
  • The author demonstrate 46% better mixing indices at the same longitudinal distance when compared with the SHM mixer
  • Conclusion:

    Research on microfluidics and mTAS has been progressing rapidly in the last two decades.
  • Among the different features of fluid at the microscale, one of the most relevant to mixing applications is the omnipresence of laminar flow where mixing can be dominantly accomplished by molecular diffusion.
  • This apparent disadvantage coupled with the reduced dimension of microfluidic devices has been leveraged to provide faster and controllable mixing.
  • Design and characterization of various microfluidic mixers have been reported, and their operation conditions and implications for mixing at microscale have been discussed
Funding
  • CGM showed a mixing performance over 50% better than the classic SGM for Re ranging from 1 to 100 as a result of the intense transverse transport induced in the fluids [123]
  • The author demonstrate 46% better mixing indices at the same longitudinal distance when compared with the SHM mixer
Reference
  • Stahl M, Aslund B, Rasmuson A (2001) Reaction crystallization kinetics of benzoic acid. AIChE J 47(7):1544–1560
    Google ScholarLocate open access versionFindings
  • Schwarzer H, Schwertfirm F, Manhart M, Schmid H, Peukert W (2006) Predictive simulation of nanoparticle precipitation based on the population balance equation. Chem Eng Sci 61(1): 167–181
    Google ScholarLocate open access versionFindings
  • Mae K, Maki T, Hasegawa I, Eto U, Mizutani Y, Honda N (2004) Development of a new micromixer based on split/recombination for mass production and its application to soap free emulsifier. Chem Eng J 101(1–3):31–38
    Google ScholarLocate open access versionFindings
  • Okubo Y, Toma M, Ueda H, Maki T, Mae K (2004) Microchannel devices for the coalescence of dispersed droplets produced for use in rapid extraction processes. Chem Eng J 101 (1–3):39–48
    Google ScholarLocate open access versionFindings
  • Sprogies T, K€ohler J, Gross G (2008) Evaluation of static micromixers for flow-through extraction by emulsification. Chem Eng J 135:S199–S202
    Google ScholarLocate open access versionFindings
  • Iwasaki T, Yoshida J (2005) Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control. Macromolecules 38(4):1159–1163
    Google ScholarLocate open access versionFindings
  • Nagaki A, Kawamura K, Suga S, Ando T, Sawamoto M, Yoshida J (2004) Cation poolinitiated controlled/living polymerization using microsystems. J Am Chem Soc 126(45): 14702–14703
    Google ScholarLocate open access versionFindings
  • Nagaki A, Tomida Y, Yoshida J (2008) Microflow-system-controlled anionic polymerization of styrenes. Macromolecules 41(17):6322–6330
    Google ScholarLocate open access versionFindings
  • Wilms D, Klos J, Frey H (2008) Microstructured reactors for polymer synthesis: a renaissance of continuous flow processes for tailor-made macromolecules? Macromol Chem Phys 209(4):343–356
    Google ScholarLocate open access versionFindings
  • Haswell S, Middleton R, O’Sullivan B, Skelton V, Watts P, Styring P (2001) The application of micro reactors to synthetic chemistry. Chem Commun (5):391–398
    Google ScholarLocate open access versionFindings
  • Hessel V, Hofmann C, L€ob P, L€ohndorf J, L€owe H, Ziogas A (2005) Aqueous Kolbe- Schmitt synthesis using resorcinol in a microreactor laboratory rig under high-p, T conditions. Org Process Res Dev 9(4):479–489
    Google ScholarFindings
  • Kee S, Gavriiliidis A (2007) Batch versus continuous mg-scale synthesis of chalcone epoxide with soluble polyethylene glycol poly-L-leucine catalyst. J Mol Catal A Chem 263(1–2):156–162
    Google ScholarLocate open access versionFindings
  • Miller E, Wheeler A (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80(5):1614–1619
    Google ScholarLocate open access versionFindings
  • Ukita Y, Asano T, Fujiwara K, Matsui K, Takeo M, Negoro S, Kanie T, Katayama M, Utsumi Y (2008) Application of vertical microreactor stack with polystylene microbeads to immunoassay. Sens Actuators A Phys 145:449–455
    Google ScholarLocate open access versionFindings
  • Bilsel O, Kayatekin C, Wallace L, Matthews C (2005) A microchannel solution mixer for studying microsecond protein folding reactions. Rev Sci Instrum 76:014302
    Google ScholarLocate open access versionFindings
  • Park T, Lee S, Seong G, Choo J, Lee E, Kim Y, Ji W, Hwang S, Gweon D (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5(4):437–442
    Google ScholarLocate open access versionFindings
  • Maerkl S (2009) Integration column: microfluidic high-throughput screening. Integr Biol 1(1):19–29
    Google ScholarLocate open access versionFindings
  • Chen X, Cui D, Liu C, Li H, Chen J (2007) Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal Chim Acta 584(2):237–243
    Google ScholarLocate open access versionFindings
  • Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotechnol Adv 25(5):483–514
    Google ScholarLocate open access versionFindings
  • Sato K, Hibara A, Tokeshi M, Hisamoto H, Kitamori T (2003) Microchip-based chemical and biochemical analysis systems. Adv Drug Deliv Rev 55(3):379–391
    Google ScholarLocate open access versionFindings
  • Malic L, Herrmann M, Hoa X, Tabrizian M (2007) Current state of intellectual property in microfluidic nucleic acid analysis. Recent Pat Eng 1(1):71–88
    Google ScholarLocate open access versionFindings
  • Ingham C, Vlieg J (2008) MEMS and the microbe. Lab Chip 8(10):1604–1616 23. Micheletti M, Lye G (2006) Microscale bioprocess optimisation. Curr Opin Biotechnol
    Google ScholarLocate open access versionFindings
  • 17(6):611–618 24. Sch€apper D, Alam M, Szita N, Eliasson Lantz A, Gernaey K (2009) Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 395(3):679–695 25.
    Google ScholarLocate open access versionFindings
  • Schulte T, Bardell R, Weigl B (2002) Microfluidic technologies in clinical diagnostics.
    Google ScholarFindings
  • Rapp B, Gruhl F, L€ange K. (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 398:2403–2412 27. Zafar Razzacki S, Thwar P, Yang M, Ugaz V, Burns M (2004) Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev 56(2):185–198 28.
    Google ScholarLocate open access versionFindings
  • Reyes D, Iossifidis D, Auroux P, Manz A (2002) Micro total analysis systems.
    Google ScholarLocate open access versionFindings
  • 1. Introduction, theory, and technology. Anal Chem 74(12):2623–2636 29. Lee S, Lee S (2004) Micro total analysis system (m-TAS) in biotechnology. Appl Microbiol
    Google ScholarLocate open access versionFindings
  • Dittrich P, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78(12):3887–3908 31.
    Google ScholarLocate open access versionFindings
  • Zhang Y, Ozdemir P (2009) Microfluidic DNA amplification – a review. Anal Chim Acta
    Google ScholarFindings
  • Doku G, Verboom W, Reinhoudt D, van den Berg A (2005) On-microchip multiphase chemistry – a review of microreactor design principles and reagent contacting modes. Tetrahedron 61(11):2733–2742 33.
    Google ScholarLocate open access versionFindings
  • Naher S, Orpen D, Brabazon D, Morshed M (2010) An overview of microfluidic mixing application. Adv Mat Res 83:931–939 34.
    Google ScholarFindings
  • Dittrich P, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218 35.
    Google ScholarLocate open access versionFindings
  • Yoshida J, Nagaki A, Iwasaki T, Suga S (2005) Enhancement of chemical selectivity by microreactors. Chem Eng Technol 28(3):259–266 36.
    Google ScholarLocate open access versionFindings
  • Baldyga J, Pohorecki R (1995) Turbulent micromixing in chemical reactors – a review. Chem Eng J Biochem Eng J 58(2):183–195 37.
    Google ScholarLocate open access versionFindings
  • Beebe DJ, Mensing GA, Walker GM (2002) Physics and application of microfluidic in biology. Annu Rev Biomed Eng 4:261–286 38.
    Google ScholarLocate open access versionFindings
  • Weigl B, Bardell R, Cabrera C (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55(3):349–377 39.
    Google ScholarLocate open access versionFindings
  • Nguyen N, Wereley S (2002) Fundamentals and applications of microfluidics. Artech House, Norwood 40.
    Google ScholarFindings
  • Einstein A, F€urth R (1956) Investigations on the theory of the Brownian movement. Dover Publications, New York 41.
    Google ScholarFindings
  • Zhang Z, Zhao P, Xiao G, Lin M, Cao X (2008) Focusing-enhanced mixing in microfluidic channels. Biomicrofluidics 2:014101 42.
    Google ScholarFindings
  • Yaralioglu G, Wygant I, Marentis T, Khuri-Yakub B (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698 43.
    Google ScholarLocate open access versionFindings
  • Glasgow I, Aubry N (2003) Enhancement of microfluidic mixing using time pulsing. Lab Chip 3(2):114–120. http://dx.doi.org/10.1039/B302569A 44.
    Locate open access versionFindings
  • Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R (2001) Ultrasonic micromixer for microfluidic systems. Sens Actuators A Phys 93(3):266–272 45. Tsai H Jr, Lin L (2002) Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump* 1. Sens Actuators A Phys 97:665–671 46.
    Google ScholarLocate open access versionFindings
  • Bau H, Zhong J, Yi M (2001) A minute magneto hydro dynamic (MHD) mixer. Sens Actuators B Chem 79(2–3):207–215 47.
    Google ScholarLocate open access versionFindings
  • Wu Z, Nguyen N (2005) Convective–diffusive transport in parallel lamination micromixers. Microfluid Nanofluid 1(3):208–217 48.
    Google ScholarLocate open access versionFindings
  • Nguyen N, Wu Z (2005) Micromixers – a review. J Micromech Microeng 15:R1
    Google ScholarLocate open access versionFindings
  • 49. Kamholz A, Yager P (2002) Molecular diffusive scaling laws in pressure-driven microfluidic channels: deviation from one-dimensional Einstein approximations. Sens Actuators B Chem 82(1):117–121
    Google ScholarLocate open access versionFindings
  • 50. Schwesinger N, Frank T, Wurmus H (1996) A modular microfluid system with an integrated micromixer. J Micromech Microeng 6:99
    Google ScholarLocate open access versionFindings
  • 51. Knight J, Vishwanath A, Brody J, Austin R (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866
    Google ScholarLocate open access versionFindings
  • 52. G€unther A, Jhunjhunwala M, Thalmann M, Schmidt M, Jensen K (2005) Micromixing of miscible liquids in segmented gas- liquid flow. Langmuir 21(4):1547–1555
    Google ScholarLocate open access versionFindings
  • 53. Song H, Tice J, Ismagilov R (2003) A microfluidic system for controlling reaction networks in time. Angew Chem 115(7):792–796
    Google ScholarLocate open access versionFindings
  • 54. Johnson T, Ross D, Locascio L (2002) Rapid microfluidic mixing. Anal Chem 74(1):45–51 55. Stroock A, Dertinger S, Ajdari A, Mezic I, Stone H, Whitesides G (2002) Chaotic mixer for microchannels. Science 295(5555):647 56.
    Google ScholarLocate open access versionFindings
  • Hessel V, L€owe H, Sch€onfeld F (2005) Micromixers – a review on passive and active mixing principles. Chem Eng Sci 60(8–9):2479–2501 57.
    Google ScholarLocate open access versionFindings
  • Jeong G, Chung S, Kim C, Lee S (2010) Applications of micromixing technology. Analyst
    Google ScholarLocate open access versionFindings
  • Kamholz A, Weigl B, Finlayson B, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 71(23):5340–5347 59.
    Google ScholarLocate open access versionFindings
  • Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11:126 60.
    Google ScholarLocate open access versionFindings
  • Ismagilov R, Stroock A, Kenis P, Whitesides G, Stone H (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76:2376 61.
    Google ScholarLocate open access versionFindings
  • Soleymani A, Kolehmainen E, Turunen I (2008) Numerical and experimental investigations of liquid mixing in T-type micromixers. Chem Eng J 135:S219–S228 62.
    Google ScholarLocate open access versionFindings
  • Wong S, Bryant P, Ward M, Wharton C (2003) Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies. Sens Actuators B Chem 95(1–3):414–424 63.
    Google ScholarLocate open access versionFindings
  • Wong S, Ward M, Wharton C (2004) Micro T-mixer as a rapid mixing micromixer. Sens Actuators B Chem 100(3):359–379 64.
    Google ScholarLocate open access versionFindings
  • Hoffmann M, Raebiger N, Schlueter M, Blazy S, Bothe D, Stemich C, Warnecke A (2003) Experimental and numerical investigations of T-shaped micromixers. In: Proceedings of the 11th European conference on mixing, Bamberg, Germany, 14–17 October 2003, pp 269–276 65.
    Google ScholarLocate open access versionFindings
  • Veenstra T, Lammerink T, Elwenspoek M, Berg A (1999) Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. J Micromech Microeng 9:199 66.
    Google ScholarLocate open access versionFindings
  • Erbacher C, Bessoth F, Busch M, Verpoorte E, Manz A (1999) Towards integrated continuous-flow chemical reactors. Microchim Acta 131(1):19–24 67.
    Google ScholarLocate open access versionFindings
  • Lob P, Drese K, Hessel V, Hardt S, Hofmann C, Lowe H, Schenk R, Schonfeld F, Werner B (2004) Steering of liquid mixing speed in interdigital micro mixers-from very fast to deliberately slow mixing. Chem Eng Technol 27(3):340–345 68.
    Google ScholarLocate open access versionFindings
  • Cha J, Kim J, Ryu S, Park J, Jeong Y, Park S, Kim H, Chun K (2006) A highly efficient 3D micromixer using soft PDMS bonding. J Micromech Microeng 16:1778. http://dx.doi.org/10.1088/0960-1317/16/9/004 69. Che-Hsin L, Chien-Hsiung T, Lung-Ming F (2005) A rapid three-dimensional vortex micromixer utilizing self-rotation effect under low Reynolds number conditions. J Micromech Microeng 15:935.http://dx.doi.org/10.1088/0960-1317/15/5/006
    Locate open access versionFindings
  • 70. Bessoth F, deMello A, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215 71. Floyd T, Schmidt M, Jensen K (2005) Silicon micromixers with infrared detection for studies of liquid-phase reactions. Ind Eng Chem Res 44(8):2351–2358
    Google ScholarLocate open access versionFindings
  • 72. Jackman R, Floyd T, Ghodssi R, Schmidt M, Jensen K (2001) Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy. J Micromech Microeng 11:263
    Google ScholarLocate open access versionFindings
  • 73. Drese K (2004) Optimization of interdigital micromixers via analytical modeling – exemplified with the SuperFocus mixer. Chem Eng J 101(1–3):403–407
    Google ScholarLocate open access versionFindings
  • 74. Ehlers S, Elgeti K, Menzel T, Wießmeier G (2000) Mixing in the offstream of a microchannel system* 1. Chem Eng Process 39(4):291–298
    Google ScholarLocate open access versionFindings
  • 75. Hardt S, Sch€onfeld F (2003) Laminar mixing in different interdigital micromixers: II. Numerical simulations. AIChE J 49(3):578–584
    Google ScholarLocate open access versionFindings
  • 76. Hessel V, Hardt S, L€owe H, Sch€onfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J 49(3):566–577
    Google ScholarLocate open access versionFindings
  • 77. Ehrfeld W, Golbig K, Hessel V, Lowe H, Richter T (1999) Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays. Ind Eng Chem Res 38(3):1075–1082
    Google ScholarLocate open access versionFindings
  • 78. Rosenfeld C, Serra C, Brochon C, Hadziioannou G (2007) High-temperature nitroxidemediated radical polymerization in a continuous microtube reactor: towards a better control of the polymerization reaction. Chem Eng Sci 62(18–20):5245–5250
    Google ScholarLocate open access versionFindings
  • 79. Rosenfeld C, Serra C, Brochon C, Hessel V, Hadziioannou G (2008) Use of micromixers to control the molecular weight distribution in continuous two-stage nitroxide-mediated copolymerizations. Chem Eng J 135:S242–S246
    Google ScholarLocate open access versionFindings
  • 80. Chung Y, Hsu Y, Jen C, Lu M, Lin Y (2004) Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber. Lab Chip 4(1):70–77
    Google ScholarLocate open access versionFindings
  • 81. Lin C, Tsai C, Fu L (2005) A rapid three-dimensional vortex micromixer utilizing selfrotation effects under low Reynolds number conditions. J Micromech Microeng 15:935
    Google ScholarLocate open access versionFindings
  • 82. Ehrfeld W, Hessel V, Haverkamp V (2000) Microreactors. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi: 10.1002/14356007.b16_b37
    Locate open access versionFindings
  • 83. J€ahnisch K, Hessel V, L€owe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43(4):406–446
    Google ScholarLocate open access versionFindings
  • 84. Lee S, Kim D, Lee S, Kwon T (2006) A split and recombination micromixer fabricated in a PDMS three-dimensional structure. J Micromech Microeng 16:1067. http://dx.doi.org/10.1088/0960-1317/16/5/027
    Locate open access versionFindings
  • 85. Fang W, Yang J (2009) A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids. Sens Actuators B Chem 140(2):629–642
    Google ScholarLocate open access versionFindings
  • 86. Branebjerg J, Gravesen P, Krog J, Nielsen C (2002) Fast mixing by lamination. In: Proceedings IEEE 9th annual international workshop on micro electro mechanical systems (MEMS’96), San Diego, CA, 11–15 Febuary 2002, pp 441–446
    Google ScholarLocate open access versionFindings
  • 87. Hardt S, Pennemann H, Sch€onfeld F (2006) Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer. Microfluid Nanofluid 2(3):237–248
    Google ScholarLocate open access versionFindings
  • 88. Munson M, Yager P (2004) Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal Chim Acta 507(1):63–71
    Google ScholarLocate open access versionFindings
  • 89. Radadia A, Cao L, Jeong H, Shannon M, Masel R (2008) A 3D micromixer fabricated with dry film resist. In: Proceedings IEEE 20th international conference on micro mechanical systems (MEMS’07), Hyogo, Japan, 21–25 January 2007, pp 361–364
    Google ScholarLocate open access versionFindings
  • 90. Sch€onfeld F, Hessel V, Hofmann C (2004) An optimised split-and-recombine micro-mixer with uniform ‘chaotic’mixing. Lab Chip 4(1):65–69
    Google ScholarLocate open access versionFindings
  • 91. Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001) Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1(1):56–60. http://dx.doi.org/10.1039/DOI/B103848F.
    Locate open access versionFindings
  • 92. Lim T, Son Y, Jeong Y, Yang D, Kong H, Lee K, Kim D (2010) Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11 (1):100–103. http://dx.doi.org/10.1039/DOI/C005325M
    Findings
  • 93. Melin J, Gimenez G, Roxhed N, Wijngaart W, Stemme G (2004) A fast passive and planar liquid sample micromixer. Lab Chip 4(3):214–219
    Google ScholarLocate open access versionFindings
  • 94. He B, Burke B, Zhang X, Zhang R, Regnier F (2001) A picoliter-volume mixer for microfluidic analytical systems. Anal Chem 73(9):1942–1947
    Google ScholarLocate open access versionFindings
  • 95. Sudarsan A, Ugaz V (2006) Multivortex micromixing. Proc Natl Acad Sci USA 103: 7228–7233
    Google ScholarLocate open access versionFindings
  • 96. Vestad T, Marr D, Oakey J (2004) Flow control for capillary-pumped microfluidic systems. J Micromech Microeng 14:1503
    Google ScholarLocate open access versionFindings
  • 97. Stiles T, Fallon R, Vestad T, Oakey J, Marr D, Squier J, Jimenez R (2005) Hydrodynamic focusing for vacuum-pumped microfluidics. Microfluid Nanofluid 1(3):280–283
    Google ScholarLocate open access versionFindings
  • 98. Lee G, Chang C, Huang S, Yang R (2006) The hydrodynamic focusing effect inside rectangular microchannels. J Micromech Microeng 16:1024
    Google ScholarLocate open access versionFindings
  • 99. Lee G, Hung C, Ke B, Huang G, Hwei B, Lai H (2001) Hydrodynamic focusing for a micromachined flow cytometer. Trans ASME J Fluid Eng 123(3):672–679
    Google ScholarLocate open access versionFindings
  • 100. Wu Z, Nguyen N (2005) Hydrodynamic focusing in microchannels under consideration of diffusive dispersion: theories and experiments. Sens Actuators B Chem 107(2):965–974
    Google ScholarLocate open access versionFindings
  • 101. Wu Z, Nguyen N (2005) Rapid mixing using two-phase hydraulic focusing in microchannels. Biomed Microdevices 7(1):13–20
    Google ScholarLocate open access versionFindings
  • 102. Park H, Qiu X, Rhoades E, Korlach J, Kwok L, Zipfel W, Webb W, Pollack L (2006) Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing. Anal Chem 78(13):4465–4473
    Google ScholarLocate open access versionFindings
  • 103. Nguyen N, Huang X (2005) Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modelling and experiment. Lab Chip 5(11):1320–1326
    Google ScholarLocate open access versionFindings
  • 104. Chang C, Huang Z, Yang R (2007) Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels. J Micromech Microeng 17:1479
    Google ScholarLocate open access versionFindings
  • 105. Simonnet C, Groisman A (2005) Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl Phys Lett 87:114104
    Google ScholarLocate open access versionFindings
  • 106. Sundararajan N, Pio M, Lee L, Berlin A (2004) Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels. J Microelectromech Syst 13(4):559–567
    Google ScholarLocate open access versionFindings
  • 107. Yang R, Feeback D, Wang W (2005) Microfabrication and test of a three-dimensional polymer hydro-focusing unit for flow cytometry applications. Sens Actuators A Phys 118(2):259–267
    Google ScholarLocate open access versionFindings
  • 108. Mao X, Lin S, Dong C, Huang T (2009) Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9(11): 1583–1589
    Google ScholarLocate open access versionFindings
  • 109. Mao X, Waldeisen J, Huang T (2007) “Microfluidic drifting” – implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7(10): 1260–1262. http://dx.doi.org/10.1039/B711155J
    Locate open access versionFindings
  • 110. Ottino J (1989) The kinematics of mixing: stretching, chaos, and transport. Cambridge University Press, Cambridge
    Google ScholarFindings
  • 111. Mengeaud V, Josserand J, Girault H (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74(16):4279–4286
    Google ScholarLocate open access versionFindings
  • 112. Jiang F, Drese K, Hardt S, K€upper M, Sch€onfeld F (2004) Helical flows and chaotic mixing in curved micro channels. AIChE J 50(9):2297–2305
    Google ScholarLocate open access versionFindings
  • 113. Sch€onfeld F, Hardt S (2004) Simulation of helical flows in microchannels. AIChE J 50(4): 771–778
    Google ScholarLocate open access versionFindings
  • 114. Chen H, Meiners J (2004) Topologic mixing on a microfluidic chip. Appl Phys Lett 84:2193 115. Liu R, Stremler M, Sharp K, Olsen M, Santiago J, Adrian R, Aref H, Beebe D (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2): 190–197 116.
    Google ScholarLocate open access versionFindings
  • Vijayendran R, Motsegood K, Beebe D, Leckband D (2003) Evaluation of a threedimensional micromixer in a surface-based biosensor{. Langmuir 19(5):1824–1828 117.
    Google ScholarLocate open access versionFindings
  • Lin Y, Gerfen G, Rousseau D, Yeh S (2003) Ultrafast microfluidic mixer and freezequenching device. Anal Chem 75(20):5381–5386 118.
    Google ScholarLocate open access versionFindings
  • Stroock A, Dertinger S, Whitesides G, Ajdari A (2002) Patterning flows using grooved surfaces. Anal Chem 74(20):5306–5312
    Google ScholarLocate open access versionFindings
  • 119. Hassell D, Zimmerman W (2006) Investigation of the convective motion through a staggered herringbone micromixer at low Reynolds number flow. Chem Eng Sci 61(9):2977–2985
    Google ScholarLocate open access versionFindings
  • 120. Wang H, Iovenitti P, Harvey E, Masood S (2002) Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 11:662
    Google ScholarLocate open access versionFindings
  • 121. Bhagat A, Papautsky I (2008) Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J Micromech Microeng 18:085005. http://dx.doi.org/10.1088/0960-1317/18/8/085005
    Locate open access versionFindings
  • 122. Bhagat A, Peterson E, Papautsky I (2007) A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J Micromech Microeng 17:1017
    Google ScholarLocate open access versionFindings
  • 123. Yang J, Fang W, Tung K (2008) Fluids mixing in devices with connected-groove channels. Chem Eng Sci 63(7):1871–1881
    Google ScholarLocate open access versionFindings
  • 124. Yang J, Huang K, Tung K, Hu I (2007) A chaotic micromixer modulated by constructive vortex agitation. J Micromech Microeng 17:2084. http://dx.doi.org/10.1088/0960-1317/17/10/021
    Locate open access versionFindings
  • 125. Howell P, Mott D, Fertig S, Kaplan C, Golden J, Oran E, Ligler F (2005) A microfluidic mixer with grooves placed on the top and bottom of the channel. Lab Chip 5(5):524–530
    Google ScholarLocate open access versionFindings
  • 126. Hong C, Choi J, Ahn C (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4(2):109–113
    Google ScholarLocate open access versionFindings
  • 127. Sudarsan A, Ugaz V (2006) Fluid mixing in planar spiral microchannels. Lab Chip 6(1): 74–82
    Google ScholarLocate open access versionFindings
  • 128. Park S, Kim J, Park J, Chung S, Chung C, Chang J (2004) Rapid three-dimensional passive rotation micromixer using the breakup process. J Micromech Microeng 14:6
    Google ScholarLocate open access versionFindings
  • 129. Long M, Sprague M, Grimes A, Rich B, Khine M (2009) A simple three-dimensional vortex micromixer. Appl Phys Lett 94:133501
    Google ScholarLocate open access versionFindings
  • 130. Park J, Kim D, Kang T, Kwon T (2008) Improved serpentine laminating micromixer with enhanced local advection. Microfluid Nanofluid 4(6):513–523
    Google ScholarLocate open access versionFindings
  • 131. Kim D, Lee S, Kwon T, Ahn C (2005) A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5(7):739–747. http://dx.doi.org/10.1039/ B418314B
    Locate open access versionFindings
  • 132. Wang L, Yang J (2006) An overlapping crisscross micromixer using chaotic mixing principles. J Micromech Microeng 16:2684. http://dx.doi.org/10.1088/0960-1317/16/12/022
    Locate open access versionFindings
  • 133. Wang L, Yang J, Lyu P (2007) An overlapping crisscross micromixer. Chem Eng Sci 62(3):711–720
    Google ScholarLocate open access versionFindings
  • 134. Kim S, Song Y, Skipper P, Han J (2006) Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly (dimethylsiloxane) microchip. Anal Chem 78(23):8011–8019
    Google ScholarLocate open access versionFindings
  • 135. Lorenz R, Edgar J, Jeffries G, Chiu D (2006) Microfluidic and optical systems for the ondemand generation and manipulation of single femtoliter-volume aqueous droplets. Anal Chem 78(18):6433–6439
    Google ScholarLocate open access versionFindings
  • 136. Quevedo E, Steinbacher J, McQuade D (2005) Interfacial polymerization within a simplified microfluidic device: capturing capsules. J Am Chem Soc 127(30):10498–10499
    Google ScholarLocate open access versionFindings
  • 137. Handique K, Burns M (2001) Mathematical modeling of drop mixing in a slit-type microchannel. J Micromech Microeng 11:548
    Google ScholarLocate open access versionFindings
  • 138. Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic Co flow system. Adv Mater 18(9):1152–1156
    Google ScholarLocate open access versionFindings
  • 139. Song H, Bringer M, Tice J, Gerdts C, Ismagilov R (2009) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83(22):4664–4666
    Google ScholarLocate open access versionFindings
  • 140. Song H, Ismagilov R (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125(47):14613–14619
    Google ScholarLocate open access versionFindings
  • 141. G€unther A, Jensen K (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6(12):1487–1503
    Google ScholarLocate open access versionFindings
  • 142. Shui L, Eijkel J, van den Berg A (2007) Multiphase flow in micro-and nanochannels. Sens Actuators B Chem 121(1):263–276
    Google ScholarLocate open access versionFindings
  • 143. Sugiura S, Nakajima M, Seki M (2002) Effect of channel structure on microchannel emulsification. Langmuir 18(15):5708–5712
    Google ScholarLocate open access versionFindings
  • 144. Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23): 9905–9908
    Google ScholarLocate open access versionFindings
  • 145. Shui L, Eijkel J, van den Berg A (2007) Multiphase flow in microfluidic systems-control and applications of droplets and interfaces. Adv Colloid Interface Sci 133(1):35–49
    Google ScholarLocate open access versionFindings
  • 146. Thorsen T, Roberts R, Arnold F, Quake S (2001) Dynamic pattern formation in a vesiclegenerating microfluidic device. Phys Rev Lett 86(18):4163–4166
    Google ScholarLocate open access versionFindings
  • 147. Yobas L, Martens S, Ong W, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8): 1073–1079. http://dx.doi.org/10.1039/B602240E
    Locate open access versionFindings
  • 148. Garstecki P, Fuerstman M, Stone H, Whitesides G (2006) Formation of droplets and bubbles in a microfluidic T-junction – scaling and mechanism of break-up. Lab Chip 6(3):437–446
    Google ScholarLocate open access versionFindings
  • 149. Teh S, Lin R, Hung L, Lee A (2008) Droplet microfluidics. Lab Chip 8(2):198–220 150. Garstecki P, Fuerstman M, Whitesides G (2005) Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys Rev Lett 94(23):234502 151.
    Google ScholarLocate open access versionFindings
  • Bringer M, Gerdts C, Song H, Tice J, Ismagilov R (1818) Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos Trans R Soc Lond A Math Phys Eng Sci 362:1087 152.
    Google ScholarLocate open access versionFindings
  • Tice J, Lyon A, Ismagilov R (2004) Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal Chim Acta 507(1):73–77 153.
    Google ScholarLocate open access versionFindings
  • Pohar A, Plazl I, Znidarsi-Plazl P (2009) Lipase-catalyzed synthesis of isoamyl acetate in an ionic liquid/n-heptane two-phase system at the microreactor scale. Lab Chip 9(23): 3385–3390 154.
    Google ScholarLocate open access versionFindings
  • Liau A, Karnik R, Majumdar A, Cate J (2005) Mixing crowded biological solutions in milliseconds. Anal Chem 77(23):7618–7625 155.
    Google ScholarLocate open access versionFindings
  • Tung K, Li C, Yang J (2009) Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer. Microfluid Nanofluid 7(4):545–557 156.
    Google ScholarLocate open access versionFindings
  • Deshmukh A, Liepmann D, Pisano A (2000) Characterization of a micro-mixing, pumping, and valving system. In: Proceedings 11th international conference on solid-state sensor and actuators (Transducers’01), Munich, Germany, 10–14 June 2001, pp 950–953 157.
    Google ScholarLocate open access versionFindings
  • Deshmukh A, Liepmann D, Pisano A (2001) Continuous micromixer with pulsatile micropumps. In: Proceedings IEEE solid-state sensor and actuator workshop, Hilton Head Island, SC, 4–8 June 2000, pp 73–76 158.
    Google ScholarLocate open access versionFindings
  • Fujii T, Sando Y, Higashino K, Fujii Y (2003) A plug and play microfluidic device. Lab Chip 3(3):193–197 159.
    Google ScholarLocate open access versionFindings
  • Lim C, Lam Y, Yang C (2010) Mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow. Biomicrofluidics 4:014101 160.
    Google ScholarFindings
  • Lei K, Li W (2008) A novel in-plane microfluidic mixer using vortex pumps for fluidic discretization. J Assoc Lab Automation 13(4):227–236 161.
    Google ScholarLocate open access versionFindings
  • Oddy M, Santiago J, Mikkelsen J (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832 162.
    Google ScholarLocate open access versionFindings
  • Yang R, Wu C, Tseng T, Huang S, Lee G (2005) Enhancement of electrokinetically-driven flow mixing in microchannel with added side channels. Jpn J Appl Phys 1 44(10):7634 163.
    Google ScholarLocate open access versionFindings
  • Posner J, Santiago J (2006) Convective instability of electrokinetic flows in a cross-shaped microchannel. J Fluid Mech 555:1–42 164.
    Google ScholarLocate open access versionFindings
  • Qian S, Bau H (2002) A chaotic electroosmotic stirrer. Anal Chem 74(15):3616–3625 165.
    Google ScholarLocate open access versionFindings
  • Glasgow I, Batton J, Aubry N (2004) Electroosmotic mixing in microchannels. Lab Chip 4(6):558–562
    Google ScholarLocate open access versionFindings
  • 166. Tang Z, Hong S, Djukic D, Modi V, West A, Yardley J, Osgood R (2002) Electrokinetic flow control for composition modulation in a microchannel. J Micromech Microeng 12: 870
    Google ScholarLocate open access versionFindings
  • 167. Yan DG, Yang C, Miao JM, Lam YC, Huang XY (2009) Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects. Electrophoresis 30(18):3144–3152
    Google ScholarLocate open access versionFindings
  • 168. Lee H, Voldman J (2007) Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance. Anal Chem 79(5):1833–1839
    Google ScholarLocate open access versionFindings
  • 169. Deval J, Tabeling P, Ho C (2002) A dielectrophoretic chaotic mixer. In: Proceedings 15th international conference on micro electro mechanical systems, Las Vegas, NV, 20–24 January 2002, pp 36–39
    Google ScholarLocate open access versionFindings
  • 170. Goet G, Baier T, Hardt S (2009) Micro contactor based on isotachophoretic sample transport. Lab Chip 9(24):3586–3593. doi:10.1039/b914466h
    Locate open access versionFindings
  • 171. Paik P, Pamula V, Pollack M, Fair R (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3(1):28–33
    Google ScholarLocate open access versionFindings
  • 172. Paik P, Pamula V, Fair R (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3(4):253–259
    Google ScholarLocate open access versionFindings
  • 173. Fowler J, Moon H, Kim C (2002) Enhancement of mixing by droplet-based microfluidics. In: Proceedings IEEE 15th international conference on micro electro mechanical systems, Las Vegas, NV, 20–24 January 2002, pp 97–100
    Google ScholarLocate open access versionFindings
  • 174. West J, Karamata B, Lillis B, Gleeson J, Alderman J, Collins J, Lane W, Mathewson A, Berney H (2002) Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab Chip 2(4):224–230
    Google ScholarLocate open access versionFindings
  • 175. Oh D, Jin J, Choi J, Kim H, Lee J (2007) A microfluidic chaotic mixer using ferrofluid. J Micromech Microeng 17:2077
    Google ScholarLocate open access versionFindings
  • 176. Yang Z, Goto H, Matsumoto M, Maeda R (2000) Active micromixer for microfluidic systems using lead-zirconate-titanate (PZT)-generated ultrasonic vibration. Electrophoresis 21(1):116–119
    Google ScholarLocate open access versionFindings
  • 177. Woias P, Hauser K, Yacoub-George E (2000) An active silicon micromixer for mTAS applications. In: van den Berg A, Olthuis W, Bergveld P (eds) Proceedings micro total analysis systems symposium (mTAS2000), Enschede, The Netherlands, 14–18 May 2000, pp 277–282
    Google ScholarLocate open access versionFindings
  • 178. Liu R, Yang J, Pindera M, Athavale M, Grodzinski P (2002) Bubble-induced acoustic micromixing. Lab Chip 2(3):151–157
    Google ScholarLocate open access versionFindings
  • 179. Liu R, Lenigk R, Druyor-Sanchez R, Yang J, Grodzinski P (2003) Hybridization enhancement using cavitation microstreaming. Anal Chem 75(8):1911–1917
    Google ScholarLocate open access versionFindings
  • 180. Jang L, Chao S, Holl M, Meldrum D (2007) Resonant mode-hopping micromixing. Sens Actuators A Phys 138(1):179–186
    Google ScholarLocate open access versionFindings
  • 181. Ahmed D, Mao X, Shi J, Juluri B, Huang T (2009) A millisecond micromixer via singlebubble-based acoustic streaming. Lab Chip 9(18):2738–2741. http://dx.doi.org/10.1039/ B903687C
    Locate open access versionFindings
  • 182. Kim S, Wang F, Burns M, Kurabayashi K (2009) Temperature-programmed natural convection for micromixing and biochemical reaction in a single microfluidic chamber. Anal Chem 81(11):4510–4516
    Google ScholarLocate open access versionFindings
  • 183. Lu L, Ryu K, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469
    Google ScholarLocate open access versionFindings
  • 184. Mensing G, Pearce T, Graham M, Beebe D (1818) An externally driven magnetic microstirrer. Philos Trans R Soc Lond A Math Phys Eng Sci 362:1059
    Google ScholarLocate open access versionFindings
  • 185. Huh Y, Park T, Lee E, Hong W, Lee S (2008) Development of a fully integrated microfluidic system for sensing infectious viral disease. Electrophoresis 29(14):2960–2969
    Google ScholarLocate open access versionFindings
  • 186. Haeberle S, Brenner T, Schlosser H, Zengerle R, Ducree J (2005) Centrifugal micromixery. Chem Eng Technol 28(5):613–616
    Google ScholarLocate open access versionFindings
  • 187. Chakraborty S, Balakotaiah V (2003) A novel approach for describing mixing effects in homogeneous reactors. Chem Eng Sci 58(3–6):1053–1061
    Google ScholarLocate open access versionFindings
  • 188. Baldyga J, Bourne J, Hearn S (1997) Interaction between chemical reactions and mixing on various scales. Chem Eng Sci 52(4):457–466
    Google ScholarLocate open access versionFindings
  • 189. Hessel V, Hardt S, L€owe H (2004) Chemical micro process engineering: fundamentals, modelling and reactions. Wiley-Vch, Weinheim
    Google ScholarFindings
  • 190. Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad O (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912
    Google ScholarLocate open access versionFindings
  • 191. Shestopalov I, Tice J, Ismagilov R (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4(4):316–321
    Google ScholarLocate open access versionFindings
  • 192. Chow A (2002) Lab on a chip: opportunities for chemical engineering. AIChE J 48(8): 1590–1595
    Google ScholarLocate open access versionFindings
  • 193. Jensen K (2001) Microreaction engineering – is small better? Chem Eng Sci 56(2):293–303 194. Mason B, Price K, Steinbacher J, Bogdan A, McQuade D (2007) Greener approaches to organic synthesis using microreactor technology. Chem Rev 107(6):2300–2318 195.
    Google ScholarLocate open access versionFindings
  • Aoki N, Hasebe S, Mae K (2004) Mixing in microreactors: effectiveness of lamination segments as a form of feed on product distribution for multiple reactions. Chem Eng J 101 (1–3):323–331 196.
    Google ScholarLocate open access versionFindings
  • Chambers R, Fox M, Sandford G (2005) Elemental fluorinePart 18. Selective direct fluorination of 1, 3-ketoesters and 1, 3-diketones using gas/liquid microreactor technology. Lab Chip 5(10):1132–1139 197.
    Google ScholarLocate open access versionFindings
  • Demello A (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442(7101):394–402 198.
    Google ScholarLocate open access versionFindings
  • Kestenbaum H, Lange de Oliveira A, Schmidt W, Sch€uth F, Ehrfeld W, Gebauer K, L€owe H, Richter T (2000) Synthesis of ethylene oxide in a catalytic microreactor system. Stud Surf Sci Catal 130:2741–2746 199.
    Google ScholarLocate open access versionFindings
  • Surangalikar H, Ouyang X, Besser R (2003) Experimental study of hydrocarbon hydrogenation and dehydrogenation reactions in silicon microfabricated reactors of two different geometries. Chem Eng J 93(3):217–224 200.
    Google ScholarLocate open access versionFindings
  • Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel J, demello A (2008) Microdroplets: a sea of applications? Lab Chip 8(8):1244–1254 201.
    Google ScholarLocate open access versionFindings
  • Li W, Young E, Seo M, Nie Z, Garstecki P, Simmons C, Kumacheva E (2008) Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft matter 4(2):258–262 202.
    Google ScholarLocate open access versionFindings
  • Capretto L, Mazzitelli S, Balestra C, Tosi A, Nastruzzi C (2008) Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology. Lab Chip 8(4):617–621 203.
    Google ScholarLocate open access versionFindings
  • Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293 204.
    Google ScholarLocate open access versionFindings
  • Fair R (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281 205.
    Google ScholarLocate open access versionFindings
  • Link D, Grasland Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz D (2006) Electric control of droplets in microfluidic devices. Angew Chem 118(16): 2618–2622 206.
    Google ScholarLocate open access versionFindings
  • Krishnadasan S, Brown R, Demello A, Demello J (2007) Intelligent routes to the controlled synthesis of nanoparticles. Lab Chip 7(11):1434–1441 207.
    Google ScholarLocate open access versionFindings
  • Voloshin Y, Halder R, Lawal A (2007) Kinetics of hydrogen peroxide synthesis by direct combination of H2 and O2 in a microreactor. Catal Today 125(1–2):40–47
    Google ScholarLocate open access versionFindings
Your rating :
0

 

Tags
Comments
小科