Lattices on simplicial partitions

J. Computational Applied Mathematics(2010)

引用 3|浏览5
摘要
In this paper, (d+1)-pencil lattices on simplicial partitions in R^d are studied. The barycentric approach naturally extends the lattice from a simplex to a simplicial partition, providing a continuous piecewise polynomial interpolant over the extended lattice. The number of degrees of freedom is equal to the number of vertices of the simplicial partition. The constructive proof of this fact leads to an efficient computer algorithm for the design of a lattice.
更多
查看译文
关键词
65d05,barycentric coordinates,continuous piecewise polynomial interpolant,simplicial partition 1991 msc: 41a05,lattice,constructive proof,barycentric approach,efficient computer algorithm,simplicial partition,41a63,pencil lattice,extended lattice,degree of freedom,polynomial interpolation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn