AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
Global, zonal and basin-scale estimates of GRACEbased storage changes showed a wide range in variability and magnitude, emphasizing the space-time heterogeneity in terrestrial water storage changes response

Analysis of terrestrial water storage changes from GRACE and GLDAS

WATER RESOURCES RESEARCH, no. 2 (2008)

引用285|浏览10
下载 PDF 全文
引用
微博一下

摘要

[1] Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided first estimates of land water storage variations by monitoring the time-variable component of Earth's gravity field. Here we characterize spatial-temporal variations in terrestrial water storage changes (TWSC) from GRACE and compare them to those simula...更多

代码

数据

0
简介
  • [2] Terrestrial water storage (TWS) is defined as all forms of water stored above and underneath the surface of the Earth.
  • [5] Most GRACE hydrology studies to date, including those described above and in section 2 below, have dealt with either comparison of derived terrestrial water storage anomalies (TWSA, i.e., TWS deviations from the mean rather than month to month changes) to models and to limited observations; methods of data processing and error analyses; and to new applications for monitoring TWS components and fluxes.
  • While the capability for GRACE to monitor continental scale anomalies and changes in monthly water storage is well documented, little if any work has addressed fundamental issues such as the characterization of its space-time variability and its role in terrestrial hydroclimatology, namely how observed TWSC is distributed among the terrestrial subsurface and surface stores, and how the fluxes of precipitation, evapotranspiration and runoff act to enhance or dissipate the storages.
  • Having demonstrated good agreement between the two, in the third part of the analysis, the authors discuss the zonal and global patterns of variability in TWSC and how these patterns are controlled by the various hydrologic and climatologic factors, using GLDAS-based states and fluxes
重点内容
  • [10] In order to investigate the water storage changes, corrected Gravity Recovery and Climate Experiment (GRACE) Stokes coefficients (Level 2 Gravity Field Product User Handbook, Bettadpur, S., 2003) provided by the Center for Space Research (CSR) at the University of Texas at Austin were expanded to degree and order 60 and smoothed with a 1000 km half-width Gaussian averaging kernel to produce the time varying gravity estimates
  • We find that P is a dominant control on terrestrial water storage changes (TWSC) variations in the tropics, E plays a critical role in the midlatitudes, while snow accumulation and snowmeltdriven R is significant in at high latitudes
  • [44] Global, zonal and basin-scale estimates of GRACEbased storage changes showed a wide range in variability and magnitude, emphasizing the space-time heterogeneity in TWSC response
  • Manifestations of hemispheric differences in precipitation were noted in seasonal TWSC
  • Averaged TWSC was found to have the greatest amplitude in the Southern Hemisphere (SH) tropics ($7 cm/month), and the spatial distribution showed major TWSC signals coincident with some of the largest river basins
方法
  • [10] In order to investigate the water storage changes, corrected GRACE Stokes coefficients (Level 2 Gravity Field Product User Handbook, Bettadpur, S., 2003) provided by the Center for Space Research (CSR) at the University of Texas at Austin were expanded to degree and order 60 and smoothed with a 1000 km half-width Gaussian averaging kernel to produce the time varying gravity estimates.
  • The coefficients of the lowest degree zonal harmonics, the degree two and order zero term was not taken into consideration, mainly due to large unquantifiable errors associated with this term
  • These smoothed spherical harmonic coefficients were transformed into 1 Â 1 degree gridded data that reflect vertically integrated water mass changes averaged over a few hundred kilometers with an accuracy of $1.5 cm of equivalent water thickness [Wahr et al, 2004].
  • Because of the model’s inability to represent ice sheet flow and mass balance, Antarctic was not simulated and output from Greenland was excluded from the analysis
  • For this investigation the authors extracted the relevant hydrological fluxes and storages from January, 2002 to December, 2004, and aggregated them to monthly averages or accumulations as appropriate (Table 1).
表格
  • Table1: GLDAS Variables Used in This Study
  • Table2: Estimates of Annual Mean, Amplitude of Fitted Annual Cycle and Seasonal Mean for the Continents and the Largest River Basins
Download tables as Excel
基金
  • This research was sponsored by NASA grants NNG04GE99G, NNG04GF22G and a NASA Earth System Science Fellowship to the first author, with additional support from the NASA Terrestrial Hydrology and Solid Earth and Natural Hazards Programs
引用论文
  • Adler, R. F., et al. (2003), The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979 – present), J. Hydrometeorol., 4(6), 1147 – 1167.
    Google ScholarLocate open access versionFindings
  • Alsdorf, D. E., and D. P. Lettenmaier (2003), Tracking fresh water from space, Science, 301, 1491 – 1494.
    Google ScholarLocate open access versionFindings
  • Chao, B. F., and W. P. O’Connor (1988), Global surface-water-induced seasonal-variations in the Earth’s rotation and gravitational-field, Geophys. J. Int., 94, 263 – 270.
    Google ScholarLocate open access versionFindings
  • Chen, J. L., C. R. Wilson, J. S. Famiglietti, and M. Rodell (2005), Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations, J. Geophys. Res., 110, B08408, doi:10.1029/2004JB003536.
    Locate open access versionFindings
  • Chen, J. L., C. R. Wilson, J. S. Famiglietti, and M. Rodell (2006), Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity, J. Geod., doi:10.1007/s00190-006-0104-2.
    Locate open access versionFindings
  • Church, J. A., et al (2001), Changes in sea level in Climate Change 2001: The Scientific Basis, J. T. Houghton et al. Eds. Cambridge University Press, pp 639 – 694.
    Google ScholarFindings
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley (2003), Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res., 108(D22), 8851, doi:10.1029/2002JD003296.
    Locate open access versionFindings
  • Eltahir, E. A. B., and R. L. Bras (1996), Precipitation recycling, Rev. Geophys., 34(3), 367 – 378.
    Google ScholarLocate open access versionFindings
  • Famiglietti, J. S. (2004), Remote sensing of terrestrial water storage, soil moisture and surface waters, in The state of the planet: Frontiers and challenges in geophysics, Geophys. Monogr. Sr., vol. 150, edited by R. S. J. Sparks and C. J. Hawkesworth, pp. 197 – 207, AGU, Washington D. C.
    Google ScholarLocate open access versionFindings
  • Frappart, F., G. Ramillien, S. Biancamaria, N. M. Mognard, and A. Cazenave (2006a), Evolution of high-latitude snow mass from the GRACE gravity mission (2002 – 2004), Geophys. Res. Lett., 33, L02501, doi:10.1029/2005GL024778.
    Locate open access versionFindings
  • Frappart, F., K. Do Minh, J. L’Hermitte, A. Cazenave, G. Ramillien, T. Le Toan, and N. Mognard-Campbell (2006b), Water volume change in the lower Mekong basin from satellite altimetry and imagery data, Geophys. J. Int., 167(2), 570 – 584.
    Google ScholarLocate open access versionFindings
  • Han, S.-C., C. K. Shum, C. Jekeli, and D. Alsdorf (2005), Improved estimation of terrestrial water storage changes from GRACE, Geophys. Res. Lett., 32, L07302, doi:10.1029/2005GL022382.
    Locate open access versionFindings
  • Hartmann, D. L. (1994), Global Physical Climatology, International Geophysics Series, v 56, pp-411, Academic Press, San Diego.
    Google ScholarFindings
  • Klees, R., E. A. Zapreeva, H. C. Winsemius, and H. H. G. Savenije (2007), The bias in GRACE estimates of continental water storage variations, Hydrol. Earth Syst. Sci., 11, 1227 – 1241.
    Google ScholarLocate open access versionFindings
  • Lettenmaier, D. P., and J. S. Famiglietti (2006), Water from on high, Nature, 444, 562 – 563.
    Google ScholarLocate open access versionFindings
  • Niu, G.-Y., and Z.-L. Yang (2006), Assessing a land surface model’s improvements with GRACE estimates, Geophys. Res. Lett., 33, L07401, doi:10.1029/2005GL025555.
    Locate open access versionFindings
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su (2007), Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data, J. Geophys. Res., 112, D07103, doi:10.1029/2006JD007522.
    Locate open access versionFindings
  • Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan, and S. V. Nghiem (2003), Soil moisture retrieval from AMSR-E, IEEE Trans. Geosci. Remote Sens., 41, 215 – 229.
    Google ScholarLocate open access versionFindings
  • Peixoto, J. P., and A. H. Oort (1992), Physics of Climate, pp-564, AIP Press, New York.
    Google ScholarLocate open access versionFindings
  • Ramillien, G., A. Cazenave, and O. Brunau (2004), Global time variations of hydrological signals from GRACE satellite gravimetry, Geophys. J. Int., 158, 813 – 826, doi:10.1111/j.1365-246X.2004.02328.x.
    Locate open access versionFindings
  • Ramillien, G., F. Frappart, A. Cazenave, and A. Guntner (2005), Time variations of land water storage from an inversion of 2 years of GRACE geoids, Earth Planet. Sci. Lett., 235, 283 – 301.
    Google ScholarLocate open access versionFindings
  • Ramillien, G., F. Frappart, A. Guntner, T. Ngo-Duc, A. Cazenave, and K. Laval (2006), Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry, Water Resour. Res., 42, W10403, doi:10.1029/ 2005WR004331.
    Locate open access versionFindings
  • Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess (2002), Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2, Nature, 416, 617 – 620.
    Google ScholarLocate open access versionFindings
  • Rodell, M., and J. S. Famiglietti (1999), Detectability of variations in continental water storage from satellite observations of the time dependent gravity field, Water Resour. Res., 35(9), 2705 – 2724, doi:10.1029/ 1999WR900141.
    Locate open access versionFindings
  • Rodell, M., and J. S. Famiglietti (2001), An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE), Water Resour. Res., 37(5), 1327 – 1340, doi:10.1029/2000WR900306.
    Locate open access versionFindings
  • Rodell, M., J. S. Famiglietti, J. Chen, S. I. Seneviratne, P. Viterbo, S. Holl, and C. R. Wilson (2004a), Basin scale estimates of evapotranspiration using GRACE and other observations, Geophys. Res. Lett., 31, L20504, doi:10.1029/2004GL020873.
    Locate open access versionFindings
  • Rodell, M., et al. (2004b), The global land data assimilation system, Bull. Am. Meteorol. Soc., 85, 381 – 394.
    Google ScholarLocate open access versionFindings
  • Rodell, M., J. Chen, H. Kato, J. Famiglietti, J. Nigro, and C. Wilson (2007), Estimating ground water storage changes in the Mississippi River basin (USA) using GRACE, Hydrogeol. J., 15(1), 159 – 166, doi:10.1007/ s10040-006-0103-7.
    Locate open access versionFindings
  • Schmidt, R., P. Schwintzer, F. Flechtner, C. Reigber, A. Guntner, P. Doll, G. Ramillien, A. Cazenave, S. Petrovic, H. Jochmann, and J. Wunsch (2006), GRACE observations of changes in continental water storage, Global Planet. Change, 50, 112 – 126, doi:10.1016/j.gloplacha.2004. 11.018.
    Locate open access versionFindings
  • Seo, K.-W., and C. R. Wilson (2005), Simulated estimation of hydrological loads from GRACE, J. Geod., 78, 442 – 456, doi:10.1007/s00190-0040410-5.
    Locate open access versionFindings
  • Seo, K.-W., C. R. Wilson, J. S. Famiglietti, J. L. Chen, and M. Rodell (2006), Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE), Water Resour. Res., 42, W05417, doi:10.1029/2005WR004255.
    Locate open access versionFindings
  • Shukla, J. Y., and Mintz (1982), Influence of land-surface evapo-transpiration on the Earths climate, Science, 215, 1498 – 1501.
    Google ScholarLocate open access versionFindings
  • Swenson, S. C., and P. C. D. Milly (2006), Climate model biases in seasonality of continental water storage revealed by satellite gravimetry, Water Resour. Res., 42, W03201, doi:10.1029/2005WR004628.
    Locate open access versionFindings
  • Swenson, S., and J. Wahr (2002), Methods for inferring regional surfacemass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity, J. Geophys. Res., 107(B9), 2193, doi:10.1029/2001JB000576.
    Locate open access versionFindings
  • Swenson, S. C., and J. Wahr (2006a), Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements, J. Hydrometeorol., 7(2), 252 – 270, doi:10.1175/JHM478.1.
    Locate open access versionFindings
  • Swenson, S., and J. Wahr (2006b), Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33, L08402, doi:10.1029/ 2005GL025285.
    Locate open access versionFindings
  • Swenson, S., J. Wahr, and P. C. D. Milly (2003), Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE), Water Resour. Res., 39(8), 1223, doi:10.1029/2002WR001808.
    Locate open access versionFindings
  • Syed, T. H., V. Lakshmi, E. Paleologos, D. Lohmann, K. Mitchell, and J. S. Famiglietti (2004), Analysis of process controls in land surface hydrological cycle over the continental United States, J. Geophys. Res., 109, D22105, doi:10.1029/2004JD004640.
    Locate open access versionFindings
  • Syed, T. H., J. S. Famiglietti, J. Chen, M. Rodell, S. I. Seneviratne, P. Viterbo, and C. R. Wilson (2005), Total basin discharge for the Amazon and Mississippi river basins from GRACE and a land-atmosphere water balance, Geophys. Res. Lett., 32, L24404, doi:10.1029/2005GL024851.
    Locate open access versionFindings
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber (2004a), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920.
    Locate open access versionFindings
  • Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins (2004b), GRACE measurements of mass variability in the Earth system, Science, 305, 503 – 505.
    Google ScholarLocate open access versionFindings
  • Velicogna, I., and J. Wahr (2006a), Measurements of time-variable gravity show mass loss in Antarctica, Science, 311(5768), 1754 – 1756.
    Google ScholarLocate open access versionFindings
  • Velicogna, I., and J. Wahr (2006b), Acceleration of Greenland ice mass loss in Spring 2004, Nature, 443(7109), 329 – 331.
    Google ScholarLocate open access versionFindings
  • Wahr, J., M. Molenaar, and F. Bryan (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103(B12), 30,205 – 30,230, doi:10.1029/98JB02844.
    Locate open access versionFindings
  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna (2004), Time-variable gravity from GRACE: First results, Geophys. Res. Lett., 31, L11501, doi:10.1029/2004GL019779.
    Locate open access versionFindings
  • Wahr, J., S. Swenson, and I. Velicogna (2006), Accuracy of GRACE mass estimates, Geophys. Res. Lett., 33, L06401, doi:10.1029/2005GL025305.
    Locate open access versionFindings
  • Winsemius, H. C., H. H. G. Savenije, N. C. vandeGiesen, B. J. J. M. vandenHurk, E. A. Zapreeva, and R. Klees (2006), Assessment of Gravity Recovery and Climate Experiment (GRACE) temporal signature over upper Zambezi, Water Resour. Res., 42, W12201, doi:10.1029/ 2006WR005192.
    Locate open access versionFindings
  • Yeh, P.J.-F., S. C. Swenson, J. S. Famiglietti, and M. Rodell (2006), Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE), Water Resour. Res., 42, W12203, doi:10.1029/2006WR005374.
    Locate open access versionFindings
0
您的评分 :

暂无评分

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn