AI帮你理解科学
Parameter adjustment in Bayes networks. The generalized noisy OR-gate
UAI'93 Proceedings of the Ninth international conference on Uncertainty in artificial intelligence, (2013): 99-105
EI
摘要
Spiegelhalter and Lauritzen [15] studied sequential learning in Bayesian networks and proposed three models for the representation of conditional probabilities. A forth model, shown here, assumes that the parameter distribution is given by a product of Gaussian functions and updates them from the λ and π messages of evidence propagation. ...更多
代码:
数据:
标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn