Comprehensive Risk System Based on Shear Wave Elastography and BI-RADS Categories in Assessing Axillary Lymph Node Metastasis of Invasive Breast Cancer-A Multicenter Study
FRONTIERS IN ONCOLOGY(2022)
摘要
PurposeTo develop a risk stratification system that can predict axillary lymph node (LN) metastasis in invasive breast cancer based on the combination of shear wave elastography (SWE) and conventional ultrasound. Materials and MethodsA total of 619 participants pathologically diagnosed with invasive breast cancer underwent breast ultrasound examinations were recruited from a multicenter of 17 hospitals in China from August 2016 to August 2017. Conventional ultrasound and SWE features were compared between positive and negative LN metastasis groups. The regression equation, the weighting, and the counting methods were used to predict axillary LN metastasis. The sensitivity, specificity, and the areas under the receiver operating characteristic curve (AUC) were calculated. ResultsA significant difference was found in the Breast Imaging Reporting and Data System (BI-RADS) category, the "stiff rim" sign, minimum elastic modulus of the internal tumor and peritumor region of 3 mm between positive and negative LN groups (p < 0.05 for all). There was no significant difference in the diagnostic performance of the regression equation, the weighting, and the counting methods (p > 0.05 for all). Using the counting method, a 0-4 grade risk stratification system based on the four characteristics was established, which yielded an AUC of 0.656 (95% CI, 0.617-0.693, p < 0.001), a sensitivity of 54.60% (95% CI, 46.9%-62.1%), and a specificity of 68.99% (95% CI, 64.5%-73.3%) in predicting axillary LN metastasis. ConclusionA 0-4 grade risk stratification system was developed based on SWE characteristics and BI-RADS categories, and this system has the potential to predict axillary LN metastases in invasive breast cancer.
更多查看译文
关键词
breast neoplasms, lymphatic metastasis, ultrasonography, elasticity imaging techniques, risk assessment
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn