Polynomial-Time Algorithms for Permutation Groups

FOCS(1980)

引用 378|浏览27
摘要
A permutation group on n letters may always be represented by a small set of generators, even though its size may be exponential in n. We show that it is practical to use such a representation since many problems such as membership testing, equality testing, and inclusion testing are decidable in polynomial time. In addition, we demonstrate that the normal closure of a subgroup can be computed in polynomial time, and that this procedure can be used to test a group for solvability. We also describe an approach to computing the intersection of two groups. The procedures and techniques have wide applicability and have recently been used to improve many graph isomorphism algorithms.
更多
查看译文
关键词
color,theorems,algorithm design and analysis,mathematical logic,generators,indexes,polynomials,tin,mathematics,permutations,writing,algorithms,monte carlo method,technical report,algebra,computer science,testing,stochastic processes,graph isomorphism,permutation group,graphs,polynomial time,exponential functions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn