Bias, precision and heritability of self-reported and clinically measured height in Australian twins.
Human genetics(2006)
摘要
Many studies of quantitative and disease traits in human genetics rely upon self-reported measures. Such measures are based on questionnaires or interviews and are often cheaper and more readily available than alternatives. However, the precision and potential bias cannot usually be assessed. Here we report a detailed quantitative genetic analysis of stature. We characterise the degree of measurement error by utilising a large sample of Australian twin pairs (857 MZ, 815 DZ) with both clinical and self-reported measures of height. Self-report height measurements are shown to be more variable than clinical measures. This has led to lowered estimates of heritability in many previous studies of stature. In our twin sample the heritability estimate for clinical height exceeded 90%. Repeated measures analysis shows that 2-3 times as many self-report measures are required to recover heritability estimates similar to those obtained from clinical measures. Bivariate genetic repeated measures analysis of self-report and clinical height measures showed an additive genetic correlation >0.98. We show that the accuracy of self-report height is upwardly biased in older individuals and in individuals of short stature. By comparing clinical and self-report measures we also showed that there was a genetic component to females systematically reporting their height incorrectly; this phenomenon appeared to not be present in males. The results from the measurement error analysis were subsequently used to assess the effects of error on the power to detect linkage in a genome scan. Moderate reduction in error (through the use of accurate clinical or multiple self-report measures) increased the effective sample size by 22%; elimination of measurement error led to increases in effective sample size of 41%.
更多查看译文
关键词
linkage,human genetics,association,genetics,population,sample size,weight,quantitative genetics,maximum likelihood,measurement error,genetic correlation,repeated measures
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn