Upregulation of N-acetylaspartic acid resulting nitric oxide toxicity induces aspartoacylase mutations and protein interaction to cause pathophysiology seen in Canavan disease.

Medical Hypotheses(2010)

引用 5|浏览2
暂无评分
摘要
Aspartoacylase (ASPA) converts N-acetylaspartic acid into aspartate and acetate. In Canavan disease (CD), N-acetylaspartic acid (NAA) is found to be increased and over 65 mutations including IVS4+1 G→T, deletion of introns and exons have been reported in the ASPA gene. These changes lead to severe form or mild form of CD. The present study was aimed to understand mechanism in the cause of mutations in ASPA and pathophysiology seen in patients with CD. We have reported that elevated levels of NAA induce inducible nitric oxide (iNOS) to produce nitric oxide toxicity in CD. Nitric oxide toxicity has been shown to induce several mutations including base change G→T and deletion and enhances protein interaction in several genes. Therefore we hypothesize that upregulation of NAA stimulates NOS and the resulting nitric oxide toxicity induces ASPA mutations and protein interaction to result pathophysiological abnormalities seen in patients with CD.
更多
查看译文
关键词
nitric oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要