An Algebraic Theory of Complexity for Discrete Optimisation

SIAM JOURNAL ON COMPUTING(2013)

引用 38|浏览59
暂无评分
摘要
Discrete optimization problems arise in many different areas and are studied under many different names. In many such problems the quantity to be optimized can be expressed as a sum of functions of a restricted form. Here we present a unifying theory of complexity for problems of this kind. We show that the complexity of a finite-domain discrete optimization problem is determined by certain algebraic properties of the objective function, which we call weighted polymorphisms. We define a Galois connection between sets of rational-valued functions and sets of weighted polymorphisms and show how the closed sets of this Galois connection can be characterized. These results provide a new approach to studying the complexity of discrete optimization. We use this approach to identify certain maximal tractable subproblems of the general problem and hence derive a complete classification of complexity for the Boolean case.
更多
查看译文
关键词
Galois connection,constraint optimization,discrete optimization,valued constraint satisfaction problems,weighted clones,weighted polymorphisms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要