AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
We have discovered the sequences for these molecules that can eliminate all curvature from the nanostructures they form in water and generate completely flat nanobelts with giant dimensions relative to previously reported systems

Self-assembly of giant peptide nanobelts.

NANO LETTERS, no. 3 (2009): 945-951

被引用310|浏览12
WOS
下载 PDF 全文
引用
微博一下

摘要

Many alkylated peptide amphiphiles have been reported to self-assemble into cylindrical nanofibers with diameters on the order of a few nanometers and micrometer scale lengths; these nanostructures can be highly bioactive and are of great Interest in many biomedical applications. We have discovered the sequences for these molecules that c...更多

代码

数据

0
简介
  • Many alkylated peptide amphiphiles have been reported to self-assemble into cylindrical nanofibers with diameters on the order of a few nanometers and micrometer scale lengths; these nanostructures can be highly bioactive and are of great interest in many biomedical applications.
  • A direct measurement from cryo-TEM images reveals that the height of the nanobelt in Figure 2b is approximately 12 nm, suggesting a stacking of three peptide amphiphile bilayers.
重点内容
  • Many alkylated peptide amphiphiles have been reported to self-assemble into cylindrical nanofibers with diameters on the order of a few nanometers and micrometer scale lengths; these nanostructures can be highly bioactive and are of great interest in many biomedical applications
  • Our previous work showed that a great diversity of peptide amphiphiles, molecules that contain peptide sequences covalently grafted to alkyl segments, self-assemble into cylindrical nanofibers as a result of hydrogen bonding among peptide segments and hydrophobic collapse of alkyl tails.[11,18,19,48]
  • We show here that alternating tetrapeptide sequences in these molecules with hydrophobic and negatively charged residues (V and E) and alkyl segments with 16 carbons self-assemble into 1D nanostructures that lose all curvature and grow laterally to create nanobelts (Figure 1a, molecular synthesis, purification, and characterization are provided in Supporting Information)
  • Tapping-mode atomic force microscopy (AFM) imaging (Figure 1b-g) reveals the flat, beltlike morphology of the nanostructures formed in aqueous solution at a concentration of 0.1 wt % over the course of 2 weeks. (Nanobelts are observed after 2 days.) These nanobelt assemblies exhibit lengths well over tens of micrometers and widths on the order of 150 nm
  • A direct measurement from cryo-TEM images reveals that the height of the nanobelt in Figure 2b is approximately 12 nm, suggesting a stacking of three peptide amphiphile bilayers
  • In the system reported here, we hypothesize that lateral assembly of the nanobelt morphology is due to the hydrophobic collapse of alkyl tails which provides sufficient energy to compensate for the elastic penalty of untwisting peptide sheets
结果
  • When the authors disrupted the alternating hydrophobic and hydrophilic amino acid sequence by replacing the VEVE peptide segment with a structural motif of VVEE, the resulting nanostructures regain their interfacial curvature, forming cylindrical nanofibers under the exact same conditions (Figure S6 in Supporting Information).
  • Lateral growth of the nanobelt should depend on the hydrophobic collapse of alkyl tails and amino acid side chain interactions and on the elastic penalty of untwisting the natural shape of peptide -sheets.[44] Within a cylindrical aggregate the natural twisting of -sheets can be accommodated;[18] this would not be the case within a flat structure of significant width like the nanobelt.
  • To the best of the knowledge, observation of the “broom” morphology by TEM in this work offers the first direct mechanistic evidence for the transition from a flat and wide aggregate of -sheet assemblies to twisted one-dimensional nanostructures.
  • The lack of well-defined lateral adhesion forces often causes the peptides to roll into bundles due to the attractive interaction between N-termini and C-termini.[42] Often times, aggregates are formed as narrow filaments due to the unfavorable interactions between hydrophilic peptide side chains.[5,26,53] In the system reported here, the authors hypothesize that lateral assembly of the nanobelt morphology is due to the hydrophobic collapse of alkyl tails which provides sufficient energy to compensate for the elastic penalty of untwisting peptide sheets.
  • To assess the possibility of using the flat nanobelts for cell signaling, the authors introduced the bioactive cell adhesion epitope arginine-glycine-aspartic acid (RGD) at the terminus of the peptide segment.[57] The RGD epitope, a small peptide sequence from extracellular matrix proteins, has been widely used to create bioactive nanostructures.[9] In the design, one glycine (G) residue was placed as a spacer between the VEVE peptide sequence and the RGD epitope to maintain the alternating hydrophobic and hydrophilic structural motif.
结论
  • The observation of twisted and narrower belt morphology formed by molecules with the extended peptide sequence can be rooted in the greater entropic penalty for untwisting the peptide region and possibly repulsive interactions among side chains, both limiting lateral growth.
  • Supporting Information Available: Synthesis of peptide molecules, characterization method of assembled nanostructures, molecular characterization of the studied peptides, height measurement of nanobelts by AFM, plots of small angle neutron scattering profiles of nanobelt solutions, cryo-
基金
  • Funding of this work was supported by the U.S Department of Energy (Grant No DE-FG0200ER45810), by the National Science Foundation (NSF Grant No DMR-0605427, MRSEC at Northwestern University Grant No NSF DMR-0520513, and NSEC at Northwestern University Grant No NSEC EEC-0647560), and by the National Institutes of Health (Grant Number NIH/ NIBIB 5R01EB003806)
引用论文
  • (1) Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N. Science 1998, 282 (5391), 1105–1107.
    Google ScholarLocate open access versionFindings
  • (2) Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Nature 2001, 409 (6816), 66–69.
    Google ScholarLocate open access versionFindings
  • (3) Alivisatos, A. P. Science 1996, 271 (5251), 933–937.
    Google ScholarLocate open access versionFindings
  • (4) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291 (5510), 1947–1949.
    Google ScholarLocate open access versionFindings
  • (5) Schneider, J. P.; Pochan, D. J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. J. Am. Chem. Soc. 2002, 124 (50), 15030–15037.
    Google ScholarLocate open access versionFindings
  • (6) Aggeli, A.; Bell, M.; Boden, N.; Keen, J. N.; McLeish, T. C. B.; Nyrkova, I.; Radford, S. E.; Semenov, A. J. Mater. Chem. 1997, 7 (7), 1135–1145.
    Google ScholarLocate open access versionFindings
  • (7) Caplan, M. R.; Schwartzfarb, E. M.; Zhang, S. G.; Kamm, R. D.; Lauffenburger, D. A. Biomaterials 2002, 23 (1), 219–227.
    Google ScholarLocate open access versionFindings
  • (8) Hartgerink, J. D.; Zubarev, E. R.; Stupp, S. I. Curr. Opin. Solid State Mater. Sci. 2001, 5 (4), 355–361.
    Google ScholarLocate open access versionFindings
  • (9) Storrie, H.; Guler, M. O.; Abu-Amara, S. N.; Volberg, T.; Rao, M.; Geiger, B.; Stupp, S. I. Biomaterials 2007, 28 (31), 4608–4618.
    Google ScholarLocate open access versionFindings
  • (10) Silva, G. A.; Czeisler, C.; Niece, K. L.; Beniash, E.; Harrington, D. A.; Kessler, J. A.; Stupp, S. I. Science 2004, 303 (5662), 1352–1355.
    Google ScholarLocate open access versionFindings
  • (11) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294 (5547), 1684–1688.
    Google ScholarLocate open access versionFindings
  • (12) Won, Y. Y.; Davis, H. T.; Bates, F. S. Science 1999, 283 (5404), 960–963.
    Google ScholarLocate open access versionFindings
  • (13) Cui, H. G.; Chen, Z. Y.; Zhong, S.; Wooley, K. L.; Pochan, D. J. Science 2007, 317 (5838), 647–650.
    Google ScholarLocate open access versionFindings
  • (14) Zubarev, E. R.; Sone, E. D.; Stupp, S. I. Chem.sEur. J. 2006, 12 (28), 7313–7327.
    Google ScholarFindings
  • (15) Sackmann, E. Science 1996, 271 (5245), 43–48.
    Google ScholarLocate open access versionFindings
  • (16) Li, L. S.; Stupp, S. I. Macromolecules 1997, 30 (18), 5313–5320.
    Google ScholarLocate open access versionFindings
  • (17) Stupp, S. I.; Son, S.; Lin, H. C.; Li, L. S. Science 1993, 259 (5091), 59–63.
    Google ScholarLocate open access versionFindings
  • (18) Jiang, H. Z.; Guler, M. O.; Stupp, S. I. Soft Matter 2007, 3 (4), 454– 462.
    Google ScholarLocate open access versionFindings
  • (19) Guler, M. O.; Hsu, L.; Soukasene, S.; Harrington, D. A.; Hulvat, J. F.; Stupp, S. I. Biomacromolecules 2006, 7 (6), 1855–1863.
    Google ScholarLocate open access versionFindings
  • (20) Rajangam, K.; Behanna, H. A.; Hui, M. J.; Han, X. Q.; Hulvat, J. F.; Lomasney, J. W.; Stupp, S. I. Nano Lett. 2006, 6 (9), 2086–2090.
    Google ScholarLocate open access versionFindings
  • (21) Serpell, L. C. Biochim. Biophys. Acta 2000, 1502 (1), 16–30.
    Google ScholarLocate open access versionFindings
  • (22) Sipe, J. D.; Cohen, A. S. J. Struct. Biol. 2000, 130 (2-3), 88–98.
    Google ScholarFindings
  • (23) Wetzel, R. Acc. Chem. Res. 2006, 39 (9), 671–679.
    Google ScholarLocate open access versionFindings
  • (24) Lu, K.; Guo, L.; Mehta, A. K.; Childers, W. S.; Dublin, S. N.; Skanthakumar, S.; Conticello, V. P.; Thiyagarajan, P.; Apkarian, R. P.; Lynn, D. G. Chem. Commun. 2007, (26), 2729–2731.
    Google ScholarLocate open access versionFindings
  • (25) Hendler, N.; Sidelman, N.; Reches, M.; Gazit, E.; Rosenberg, Y.; Richter, S. AdV. Mater. 2007, 19 (11), 1485–1488.
    Google ScholarLocate open access versionFindings
  • (26) Yokoi, H.; Kinoshita, T.; Zhang, S. G. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (24), 8414–8419.
    Google ScholarFindings
  • (27) Lashuel, H. A.; LaBrenz, S. R.; Woo, L.; Serpell, L. C.; Kelly, J. W. J. Am. Chem. Soc. 2000, 122 (22), 5262–5277.
    Google ScholarLocate open access versionFindings
  • (28) Matsumura, S.; Uemura, S.; Mihara, H. Chem.sEur. J. 2004, 10 (11), 2789–2794.
    Google ScholarFindings
  • (29) Yu, Y. C.; Berndt, P.; Tirrell, M.; Fields, G. B. J. Am. Chem. Soc. 1996, 118 (50), 12515–12520.
    Google ScholarLocate open access versionFindings
  • (30) Hamley, I. W. Angew. Chem., Int. Ed. 2007, 46, 8128–8147.
    Google ScholarLocate open access versionFindings
  • (31) Lowik, D.; van Hest, J. C. M. Chem. Soc. ReV. 2004, 33 (4), 234–245.
    Google ScholarLocate open access versionFindings
  • (32) Goux, W. J.; Kopplin, L.; Nguyen, A. D.; Leak, K.; Rutkofsky, M.; Shanmuganandam, V. D.; Sharma, D.; Inouye, H.; Kirschner, D. A. J. Biol. Chem. 2004, 279 (26), 26868–26875.
    Google ScholarLocate open access versionFindings
  • (33) Hecht, M. H.; Das, A.; Go, A.; Bradley, L. H.; Wei, Y. N. Protein Sci. 2004, 13 (7), 1711–1723.
    Google ScholarLocate open access versionFindings
  • (34) O’Nuallain, B.; Williams, A. D.; Westermark, P.; Wetzel, R. J. Biol. Chem. 2004, 279 (17), 17490–17499.
    Google ScholarLocate open access versionFindings
  • (35) Yang, Z. M.; Xu, K. M.; Guo, Z. F.; Guo, Z. H.; Xu, B. AdV. Mater. 2007, 19 (20), 3152–3156.
    Google ScholarLocate open access versionFindings
  • (36) Deming, T. J. Prog. Polym. Sci. 2007, 32, 858–875.
    Google ScholarLocate open access versionFindings
  • (37) Marini, D. M.; Hwang, W.; Lauffenburger, D. A.; Zhang, S. G.; Kamm, R. D. Nano Lett. 2002, 2 (4), 295–299.
    Google ScholarFindings
  • (38) Lamm, M. S.; Sharma, N.; Rajagopal, K.; Beyer, F. L.; Schneider, J. P.; Pochan, D. J. AdV. Mater. 2008, 20 (3), 447–451.
    Google ScholarLocate open access versionFindings
  • (39) Nagarkar, R. P.; Hule, R. A.; Pochan, D. J.; Schneider, J. P. J. Am. Chem. Soc. 2008, 130 (13), 4466–4474.
    Google ScholarLocate open access versionFindings
  • (40) Sakurai, T.; Koga, M.; Takafuji, M.; Ihara, H. Chem. Lett. 2003, 32 (2), 152–153.
    Google ScholarLocate open access versionFindings
  • (41) Borner, H. G.; Smarsly, B. M.; Hentschel, J.; Rank, A.; Schubert, R.; Geng, Y.; Discher, D. E.; Hellweg, T.; Brandt, A. Macromolecules 2008, 41 (4), 1430–1437.
    Google ScholarLocate open access versionFindings
  • (42) Bauer, H. H.; Aebi, U.; Haner, M.; Hermann, R.; Muller, M.; Arvinte, T.; Merkle, H. P. J. Struct. Biol. 1995, 115 (1), 1–15.
    Google ScholarFindings
  • (43) Selinger, J. V.; Spector, M. S.; Schnur, J. M. J. Phys. Chem. B 2001, 105 (30), 7157–7169.
    Google ScholarLocate open access versionFindings
  • (44) Nyrkova, I. A.; Semenov, A. N.; Aggeli, A.; Boden, N. Eur. Phys. J. B 2000, 17 (3), 481–497.
    Google ScholarLocate open access versionFindings
  • (45) Adams, D. J.; Holtzmann, K.; Schneider, C.; Butler, M. F. Langmuir 2007, 23, 12729–12736.
    Google ScholarLocate open access versionFindings
  • (46) Brizard, A.; Aime, C.; Labrot, T.; Huc, I.; Berthier, D.; Artzner, F.; Desbat, B.; Oda, R. J. Am. Chem. Soc. 2007, 129 (12), 3754–3762.
    Google ScholarLocate open access versionFindings
  • (47) Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.; Turner, M. L.; Saiani, A.; Ulijn, R. V. AdV. Mater. 2008, 20, 37–41.
    Google ScholarFindings
  • (48) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (8), 5133–5138.
    Google ScholarFindings
  • (49) Cui, H.; Hodgdon, T. K.; Kaler, E. W.; Abezgauz, L.; Danino, D.; Lubovsky, M.; Talmon, Y.; Pochan, D. J. Soft Matter 2007, 3 (8), 945–955.
    Google ScholarLocate open access versionFindings
  • (50) Porte, G. Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter; Elsevier Science B.V.: Amsterdam, 2002; pp 299-315.
    Google ScholarFindings
  • (51) Xiong, H. Y.; Buckwalter, B. L.; Shieh, H. M.; Hecht, M. H. Proc. Natl. Acad. Sci. U.S.A. 1995, 92 (14), 6349–6353.
    Google ScholarFindings
  • (52) Lamm, M. S.; Rajagopal, K.; Schneider, J. P.; Pochan, D. J. J. Am. Chem. Soc. 2005, 127 (47), 16692–16700.
    Google ScholarLocate open access versionFindings
  • (53) Dong, H.; Paramonov, S. E.; Aulisa, L.; Bakota, E. L.; Hartgerink, J. D. J. Am. Chem. Soc. 2007, 129 (41), 12468–12472.
    Google ScholarLocate open access versionFindings
  • (54) Broome, B. M.; Hecht, M. H. J. Mol. Biol. 2000, 296 (4), 961–968.
    Google ScholarFindings
  • (55) Chothia, C. J. Mol. Biol. 1973, 75 (2), 295–302.
    Google ScholarFindings
  • (56) Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. U.S.A. 2001, 98 (21), 11857–11862.
    Google ScholarFindings
  • (57) Pierschbacher, M. D.; Ruoslahti, E. Nature 1984, 309 (5963), 30–33.
    Google ScholarLocate open access versionFindings
  • (58) Krejchi, M. T.; Atkins, E. D. T.; Waddon, A. J.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A. Science 1994, 265 (5177), 1427–1432.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科