AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
Out of the curiosity of the previous finding of polypyrrole nanowire/robbins in the system of pyrrole/cetyltrimethylammonium bromide/ammonium persulfate,27 we report a systematic study on the controllable synthesis of conducting polypyrrole nanostructures by using a variety of se...

Controllable synthesis of conducting polypyrrole nanostructures.

JOURNAL OF PHYSICAL CHEMISTRY B, no. 3 (2006): 1158-1165

被引用307|浏览8
WOS SCOPUS
下载 PDF 全文
引用
微博一下

摘要

Wire-, ribbon-, and sphere-like nanostructures of polypyrrole have been synthesized by solution chemistry methods in the presence of various surfactants (anionic, cationic, or nonionic surfactant) with various oxidizing agents [ammonium persulfate (APS) or ferric chloride (FeCl3), respectively]. The surfactants and oxidizing agents used i...更多

代码

数据

0
简介
  • Micrometer- or nanometer-sized conducting polymers have attracted great attention mainly due to their potential applications in electronic circuits, chemical and electrochemical sensors, photovoltaic cells, electrochromic devices, and field emission applications.[1,2,3,4,5] One of the key strategies for synthesizing conducting polymers with dimensions at such small scales is a template-directed synthesis.[6,7,8,9,10,11,12] Templates used in this route can be classified into two major categories, namely “hard” and “soft” templates.
  • Soft-templates or molecule templates are often long range ordered structure self-assembled from certain surfactants or block copolymers, etc., which provide well-defined rooms or channels for conducting polymer chains to grow into micrometer-/nanometer-sized products.[16,17,18] The advantage of using these soft-template materials is that they are easy to remove after the synthesis, and in the meantime, the micro-/nanostructures of the resulting polymers can remain.
  • Submicrometer-sized tube junctions and dendrites of polyaniline,[23] helical poly(ethylenedioxythiophene),[9] ribbon-like poly(p-phenylene vinylene),[24] etc., have been synthesized successfully, and even conducting polymer microcontainers with bowl-, cup-, or bottle-like morphologies have been generated electrochemically by a so-called “soap bubble” technique.[25,26]
重点内容
  • Micrometer- or nanometer-sized conducting polymers have attracted great attention mainly due to their potential applications in electronic circuits, chemical and electrochemical sensors, photovoltaic cells, electrochromic devices, and field emission applications.[1,2,3,4,5] One of the key strategies for synthesizing conducting polymers with dimensions at such small scales is a template-directed synthesis.[6,7,8,9,10,11,12] Templates used in this route can be classified into two major categories, namely “hard” and “soft” templates
  • In turn the growth of polypyrrole nanostructures has been confined in different ways during polymerization, providing a potential route to control the morphology of the resulting polypyrrole
  • Wire, ribbon, and sphere-like polypyrrole nanostructures have been synthesized by the solution chemistry method in the presence of various surfactants with various oxidizing agents (APS or FeCl3), respectively
  • When anionic surfactant sodium dodeyl surfate (SDS) is used, no polypyrrole nanostructures are obtained as the selfassembly of the surfactant molecules would break down due to the doping effect of anionic surfactants into the resulting polypyrrole chains
  • The morphologies of the resulting polypyrrole nanostructures are greatly dependent on the monomer concentration, surfactant concentration, and surfactant chain length, which would provide the possibility of elaborate control of the morphologies of the resulting conducting polymers from the sphere-like, to the ribbon-like, to the wire-like
  • Fourier transform infrared spectroscopy (FTIR) demonstrates that the resulting polypyrrole nanostructures are pure and in the doped states
结果
  • If the oxidizing agent APS was used instead, the polypyrrole appeared to grow in the shape of ribbon-like nanostructures with widths in the range between 25 and 85 nm, heights in the range of several nanometers, and lengths up to several micrometers (Figure 1b)
  • These indicate that the anions of the oxidizing agents may have played a different role of counterions of altering ion pair interaction and the CTAB packing parameter.
结论
  • Wire-, ribbon-, and sphere-like polypyrrole nanostructures have been synthesized by the solution chemistry method in the presence of various surfactants with various oxidizing agents (APS or FeCl3), respectively.
  • The lamellar mesostructures would be formed by self-assembly between the cations of long chain cationic surfactant (CTAB or DTAB) and anions of the oxidizing agent of APS.
  • These mesostructures have acted as templates for the formation of wire- and ribbon-like polypyrrole nanostructures.
  • The overall profile of temperature-dependent conductivity of the polypyrrole nanostructures is in good agreement with Mott’s law for quasione-dimensional variable-range hopping with their room temperature conductivity on the order of magnitude -3
总结
  • Introduction:

    Micrometer- or nanometer-sized conducting polymers have attracted great attention mainly due to their potential applications in electronic circuits, chemical and electrochemical sensors, photovoltaic cells, electrochromic devices, and field emission applications.[1,2,3,4,5] One of the key strategies for synthesizing conducting polymers with dimensions at such small scales is a template-directed synthesis.[6,7,8,9,10,11,12] Templates used in this route can be classified into two major categories, namely “hard” and “soft” templates.
  • Soft-templates or molecule templates are often long range ordered structure self-assembled from certain surfactants or block copolymers, etc., which provide well-defined rooms or channels for conducting polymer chains to grow into micrometer-/nanometer-sized products.[16,17,18] The advantage of using these soft-template materials is that they are easy to remove after the synthesis, and in the meantime, the micro-/nanostructures of the resulting polymers can remain.
  • Submicrometer-sized tube junctions and dendrites of polyaniline,[23] helical poly(ethylenedioxythiophene),[9] ribbon-like poly(p-phenylene vinylene),[24] etc., have been synthesized successfully, and even conducting polymer microcontainers with bowl-, cup-, or bottle-like morphologies have been generated electrochemically by a so-called “soap bubble” technique.[25,26]
  • Results:

    If the oxidizing agent APS was used instead, the polypyrrole appeared to grow in the shape of ribbon-like nanostructures with widths in the range between 25 and 85 nm, heights in the range of several nanometers, and lengths up to several micrometers (Figure 1b)
  • These indicate that the anions of the oxidizing agents may have played a different role of counterions of altering ion pair interaction and the CTAB packing parameter.
  • Conclusion:

    Wire-, ribbon-, and sphere-like polypyrrole nanostructures have been synthesized by the solution chemistry method in the presence of various surfactants with various oxidizing agents (APS or FeCl3), respectively.
  • The lamellar mesostructures would be formed by self-assembly between the cations of long chain cationic surfactant (CTAB or DTAB) and anions of the oxidizing agent of APS.
  • These mesostructures have acted as templates for the formation of wire- and ribbon-like polypyrrole nanostructures.
  • The overall profile of temperature-dependent conductivity of the polypyrrole nanostructures is in good agreement with Mott’s law for quasione-dimensional variable-range hopping with their room temperature conductivity on the order of magnitude -3
表格
  • Table1: The Morphologies of the Resulting Polypyrrole Obtained in the Synthetic Conditions of Different Surfactants and Oxidizing Agents polypyrrole
Download tables as Excel
基金
  • This work was supported by National Natural Science Foundation of China (NSFC90206023), Ministry of Science and Technology of China (2001CB6105), and FOKYING TUNG Education Foundation (94012)
研究对象与分析
system using powdered samples: 750
SEM and TEM were prepared by placing a drop of an aqueous suspension of polypyrrole onto a silicon wafer and carbon-coated copper grid, respectively. Infrared spectra were recorded with a Magna-IR 750 system using powdered samples. XPS analysis was performed with an Axis Ultra spectrometer (Kratos, UK) using Monochromatic Al KR (1486.71 eV) radiation at 225 W power (15 mA, 15 kV)

引用论文
  • (1) Voss, D. Nature 2000, 407, 442.
    Google ScholarLocate open access versionFindings
  • (2) Janata, J.; Josowicz, M. Nature Mater. 2003, 2, 19.
    Google ScholarLocate open access versionFindings
  • (3) Frank, A. J.; Glenis, S.; Nelson, A. J. J. Phys. Chem. 1989, 93, 3818.
    Google ScholarLocate open access versionFindings
  • (4) Argun, A. A.; Cirpan, A.; Reynolds, J. R. AdV. Mater. 2003, 15, 1338.
    Google ScholarFindings
  • (5) Chiu, J. J.; Kei, C. C.; Peng, T. P.; Wang, W. S. AdV. Mater. 2003, 15, 1361.
    Google ScholarLocate open access versionFindings
  • (6) Wu, C. G.; Bein, T. Science 1994, 264, 1757.
    Google ScholarLocate open access versionFindings
  • (7) Martin, C. R. Science 1994, 266, 1961.
    Google ScholarLocate open access versionFindings
  • (8) Carswell, A. D. W.; O’Rear, E. A.; Grady, B. P. J. Am. Chem. Soc. 2003, 125, 14793.
    Google ScholarLocate open access versionFindings
  • (9) Hatano, T.; Bae, A. H.; Takeuchi, M.; Fujita, N.; Kaneko, K.; Ihara, H.; Takafuji, M.; Shinkai, S. Angew. Chem. Int. Ed. 2004, 43, 465.
    Google ScholarLocate open access versionFindings
  • (10) Fu, M. X.; Zhu, Y. F.; Tan, R. Q.; Shi, G. Q. AdV. Mater. 2001, 13, 1874.
    Google ScholarFindings
  • (11) Tchepournaya, I.; Vasilieva, S.; Logvinov, S.; Timonov, A.; Amadelli, R.; Bartak, D. Langmuir 2003, 19, 9005.
    Google ScholarLocate open access versionFindings
  • (12) Jerome, C.; Demoustier-Champagne, S.; Legras, R.; Jerome, R. Chem. Eur. J. 2000, 6, 3089.
    Google ScholarFindings
  • (13) Cao, L.; Chen, H. Z.; Zhou, H. B.; Zhu, L.; Sun, J. Z.; Zhang, X. B.; Xu, J. M.; Wang, M. AdV. Mater. 2003, 15, 909.
    Google ScholarLocate open access versionFindings
  • (14) Goren, M.; Qi, Z. G.; Lennox, R. B. Chem. Mater. 2000, 12, 1222.
    Google ScholarLocate open access versionFindings
  • (15) Dong, H.; Prasad, S.; Nyame, V.; Jones, W. E., Jr. Chem. Mater. 2004, 16, 371.
    Google ScholarLocate open access versionFindings
  • (16) Zhang, Z. M.; Wei, Z. X.; Wan, M. X. Macromolecules 2002, 35, 5937.
    Google ScholarLocate open access versionFindings
  • (17) Liu, W.; Kumar, J.; Tripathy, S.; Samuelson, L. A. Langmuir 2002, 18, 9696.
    Google ScholarLocate open access versionFindings
  • (18) Jang, J.; Oh, J. H. Chem. Commun. 2002, 2200.
    Google ScholarLocate open access versionFindings
  • (19) Choi, S. J.; Park, S. M. AdV. Mater. 2002, 12, 1547.
    Google ScholarLocate open access versionFindings
  • (20) Gorgen, M.; Lennox, R. B. Nano Lett. 2001, 1, 735.
    Google ScholarFindings
  • (21) Hulvat, J. F.; Stupp, S. I. Angew. Chem. Int. Ed. 2003, 42, 778.
    Google ScholarLocate open access versionFindings
  • (22) Huang, L. M.; Wang, Z. B.; Wang, H. T.; Cheng, X. L.; Mitra, A.; Yan, Y. S. J. Mater. Chem. 2002, 12, 388.
    Google ScholarLocate open access versionFindings
  • (23) Wei, Z. X.; Zhang, L. J.; Yu, M.; Yang, Y. S.; Wan, M. X. AdV. Mater. 2003, 15, 1382.
    Google ScholarLocate open access versionFindings
  • (24) Luo, Y. H.; Liu, H. W.; Xi, F.; Li, L.; Jin, X. G.; Han, C. C.; Cha, Z. M. J. Am. Chem. Soc. 2003, 125, 6447.
    Google ScholarLocate open access versionFindings
  • (25) Qu, L. T.; Shi, G. Q.; Chen, F. E.; Zhang, J. X. Macromolecules 2003, 36, 1063.
    Google ScholarLocate open access versionFindings
  • (26) Qu, L. T.; Shi, G. Q. Chem. Commun. 2003, 2, 206.
    Google ScholarFindings
  • (27) Zhang, X. T.; Zhang, J.; Liu, Z. F.; Roninson, C. Chem. Commun. 2004, 1852.
    Google ScholarLocate open access versionFindings
  • (28) Furst, E. M.; Pagac, E. S.; Tilton, R. D. Ind. Eng. Chem. Res. 1996, 35, 1566.
    Google ScholarLocate open access versionFindings
  • (29) Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. AdV. Mater. 1999, 11, 579.
    Google ScholarFindings
  • (30) Ottaviani, M. F.; Andechaga, P.; Turro, N. J.; Tomalia, D. A. J. Phys. Chem. B 1997, 101, 6057.
    Google ScholarLocate open access versionFindings
  • (31) Zielinski, R.; Ikeda, S.; Nomura, H.; Kato, S. J. Chem. Soc., Faraday Trans. 1 1988, 84, 151.
    Google ScholarLocate open access versionFindings
  • (32) Turro, N. J.; Kuo, P. L.; Somasundaran, P.; Wong, K. J. Phys. Chem. 1986, 90, 288.
    Google ScholarLocate open access versionFindings
  • (33) Burducea, G. Rom. Rep. Phys. 2004, 56, 87.
    Google ScholarLocate open access versionFindings
  • (34) Goyal, P. S.; Menon, S. V. G.; Dasannacharya, B. A.; Thiyagarajan, P. Physica B 1995, 213 & 214, 610.
    Google ScholarLocate open access versionFindings
  • (35) Choi, K. S.; Lichtenegger, H. C.; Stucky, G. D.; McFarland, E. W. J. Am. Chem. Soc. 2002, 124, 12402.
    Google ScholarLocate open access versionFindings
  • (36) Bouchama, F.; Thathagar, M. B.; Rothenberg, G.; Turkenburg, D. H.; Eiser, E. Langmuir 2004, 20, 477.
    Google ScholarLocate open access versionFindings
  • (37) Wu, A.; Kolla, H.; Manohar, S. K. Macromolecules 2005, 38, 7873.
    Google ScholarLocate open access versionFindings
  • (38) Iijima, S. Nature 1991, 354, 56.
    Google ScholarLocate open access versionFindings
  • (39) Ebbesen, T. W.; Ajayan, P. M. Nature 1992, 358, 16.
    Google ScholarLocate open access versionFindings
  • (40) Li, Y. D.; Li, X. L.; Deng, Z. X.; Zhou, B. C.; Fan, S. S.; Wang, J. W.; Sun, X. M. Angew. Chem. Int. Ed. 2002, 41, 333.
    Google ScholarLocate open access versionFindings
  • (41) Huang, J. B.; Zhao, G. X. Colloid Polym. Sci. 1995, 273, 1088.
    Google ScholarLocate open access versionFindings
  • (42) Raghavan, A. R.; Fritz, G.; Kaler, E. W. Langumuir 2002, 18, 3797.
    Google ScholarLocate open access versionFindings
  • (43) Patrick, H. N.; Warr, G. G.; Manne, S.; Aksay, I. A. Langmuir 1999, 1685.
    Google ScholarLocate open access versionFindings
  • (44) Cho, G.; Fung, B. M.; Glatzhofer, D. T.; Lee, J. S.; Shul, Y. G. Langmuir 2001, 17, 456.
    Google ScholarLocate open access versionFindings
  • (45) Tian, B.; Zerbi, G. J. Chem. Phys. 1990, 92, 3886.
    Google ScholarLocate open access versionFindings
  • (46) Tian, B.; Zerbi, G. J. Chem. Phys. 1990, 92, 3892.
    Google ScholarLocate open access versionFindings
  • (47) Joo, J.; Lee, J. K.; Lee, S. Y.; Jang, K. S.; Oh, E. J.; Epstein, A. J. Macromolecules 2000, 33, 5131.
    Google ScholarLocate open access versionFindings
  • (48) Hawkins, S. J.; Ratcliffe, N. M. J. Mater. Chem. 2000, 10, 2057.
    Google ScholarLocate open access versionFindings
  • (49) Zhang, X.; Manohar, S. K. J. Am. Chem. Soc. 2004, 126, 12714.
    Google ScholarLocate open access versionFindings
  • (50) Van Der Pauw, L. T. Philips Res. Rep. 1958, 13, 1.
    Google ScholarLocate open access versionFindings
  • (51) Kaiser, A. B. AdV. Mater. 2001, 13, 927.
    Google ScholarFindings
  • (52) Kaiser, A. B. Rep. Prog. Phys. 2001, 64, 1.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科