Numerical and experimental studies of deep indentation on single crystals

JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES(2008)

引用 5|浏览5
暂无评分
摘要
Indentation tests with large penetration depths have been used to study the plastic deformation behavior of materials. In this work, finite element simulations of wedge indentation into face-centered cubic single crystals were performed. Numerical solutions to the stresses and shear strains within the single crystals indented with a relatively large penetration depth were obtained. The crystal lattice rotation map of the indented crystals was also shown. Indentation experiments were conducted on copper crystals and the results were used to validate the numerical predictions. Comparison of the numerical solutions to the crystal lattice rotation with the experimentally measured lattice rotation map was made. The main features of the crystal lattice in-plane rotation map from the finite element simulations are also found on the map developed from the electron backscatter diffraction measurements. Both simulations and experimental measurements reveal the same dislocation structures as evidenced by the slip sectors underneath the wedge indentation zone.
更多
查看译文
关键词
finite element simulation,indentation,plastic deformation,copper crystal,stress field,shear strain,electron backscatter diffraction,crystal lattice rotation,slip,dislocation structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要