AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
The combination of gel permeation and adsorption chromatography with chargetransfer complexation leads rapidly from crude samples to polycyclic aromatic hydrocarbon concentrates that are adequately pure for subsequent analysis

Polycyclic aromatic hydrocarbons in the environment: isolation and characterization by chromatography, visible, ultraviolet, and mass spectrometry.

Analytical chemistry, no. 12 (1974): 1663-1671

被引用297|浏览10
WOS
下载 PDF 全文
引用
微博一下

摘要

Polycyclic aromatic hydrocarbons from many sources accumulate in soils, recent and ancient sediments, and in many other environmental samples. They occur at low concentrations and in the presence of other extractable materials. We describe an isolation technique utilizing a sequence of gel filtration, adsorption chromatography, and charge...更多

代码

数据

0
简介
  • Polycyclic aromatic hydrocarbons from many sources accumulate in soils, recent and ancient sediments, and in many other environmental samples.
  • It leads rapidly to aromatic ring-type concentrates that are sufficiently pure for UV, visible, and mass spectrometry
  • In combination, these techniques resolve adequately very complex mixtures of aromatic hydrocarbons, for instance from fossil fuels, and provide a detailed insight into the hydrocarbon composition, on a milligram to microgram scale.
  • Environmental samples may contain PAH assemblages from many of these sources
  • This implies the need for analytical techniques that can resolve adequately the numerous PAH series in fossil fuels.
  • The authors present some analyses of near-shore marine sediments which demonstrate a previously undocumented compositional complexity of the PAH fraction
重点内容
  • Polycyclic aromatic hydrocarbons from many sources accumulate in soils, recent and ancient sediments, and in many other environmental samples
  • We describe an isolation technique utilizing a sequence of gel filtration, adsorption chromatography, and charge transfer complexation
  • The present paper describes the analysis of very complex polycyclic aromatic hydrocarbon (PAH) mixtures, primarily from soils and sediments
  • The combination of gel permeation and adsorption chromatography with chargetransfer complexation leads rapidly from crude samples to PAH concentrates that are adequately pure for subsequent analysis
  • An extension of the upper limit for better recovery of coronene and higher ring-number PAH series may be possible through a different choice of operating parameters
方法
  • A blank of methanol (275 ml) and benzene (75 ml was refluxed in the Soxhlet apparatus and carried through the entire procedure, excluding chromatogram B.
  • The fractions from chromatogram A had no measurahle LV/Vis absorbance.
  • The fractions were combined for greater sensitivity in mass spectral analysis, and subjected to probe distilllation.
  • Ko. PAH series was recognizable in the mass spectra
结果
  • Station A, 1.3 miles from shore a t West Falmouth, Mass., in 15 m of water, [location 90 of Blumer and Sass ( 8 ) ] ,and Station B, 1.8 miles off the entrance to New Bedford Harbor and 0.5 mile from the nearest shore, outside the dredged channel in 7.5 ni of water
  • Both samples were collected in July 19'73.
结论
  • The present paper describes the analysis of very complex PAH mixtures, primarily from soils and sediments.
  • Occurring in these samples, the authors expect that the method will be applicable t o a wider range of materials.
  • The combination of gel permeation and adsorption chromatography with chargetransfer complexation leads rapidly from crude samples to PAH concentrates that are adequately pure for subsequent analysis.
  • The method covers compounds from the tricyclic aromatics to coronene.
  • This range is limited by the greater volatility of mono- and diaromatics and the instability of their T N F adducts.
  • An extension of the upper limit for better recovery of coronene and higher ring-number PAH series may be possible through a different choice of operating parameters
表格
  • Table1: Table 1
  • Table2: Table 2
  • Table3: Table 3
  • Table4: Table 4
  • Table5: Table 5
  • Table6: Table 6
  • Table7: Table 7
  • Table8: Table 8
  • Table9: Table 9
  • Table10: Polycyclic Aromatic Hydrocarbons in
  • Table11: Mass Distribution of theNominal -22 Series in Fraction 3
  • Table12: Table 10
  • Table13: Recovery o f Reference Hydrocarbons a t Microgram Levels
  • Table14: Table 12
  • Table15: Table 13
  • Table16: Table 14
  • Table17: Table 15
  • Table18: Table 16
  • Table19: Table 17
  • Table20: Table 18
  • Table21: Table 19
  • Table22: Table 20
  • Table23: Table 21
  • Table24: Table 22
  • Table25: Table 23
  • Table26: Table 24
  • Table27: Table 25
  • Table28: Table 26
  • Table29: Table 27
  • Table30: Table 28
  • Table31: Table 29
  • Table32: Table 30
  • Table33: Table 31
  • Table34: Table 32
  • Table35: Table 33
  • Table36: Table 34
  • Table37: Table 35
  • Table38: Table 36
  • Table39: Table 37
  • Table40: Table 38
  • Table41: Table 39
  • Table42: Table 40
  • Table43: Table 41
  • Table44: Table 42
  • Table45: Table 43
  • Table46: Table 44
  • Table47: Table 45
  • Table48: Table 46
  • Table49: Table 47
  • Table50: Table 48
  • Table51: Table 49
  • Table52: Table 50
  • Table53: Table 51
  • Table54: Table 52
  • Table55: Table 53
  • Table56: Table 54
  • Table57: Table 55
  • Table58: Table 56
  • Table59: Table 57
  • Table60: Table 58
  • Table61: Table 59
  • Table62: Table 60
  • Table63: Table 61
  • Table64: Table 62
  • Table65: Table 63
  • Table66: Table 64
  • Table67: Table 65
  • Table68: Table 66
  • Table69: Table 67
  • Table70: Table 68
  • Table71: Table 69
  • Table72: Table 70
  • Table73: Table 71
  • Table74: Table 72
  • Table75: Table 73
  • Table76: Table 74
  • Table77: Table 75
  • Table78: Table 76
  • Table79: Table 77
  • Table80: Table 78
  • Table81: Table 79
  • Table82: Table 80
  • Table83: Table 81
  • Table84: Table 82
  • Table85: Table 83
  • Table86: Table 84
  • Table87: Table 85
  • Table88: Table 86
  • Table89: Table 87
  • Table90: Table 88
  • Table91: Table 89
  • Table92: Table 90
  • Table93: Table 91
  • Table94: Table 92
  • Table95: Table 93
  • Table96: Table 94
  • Table97: Table 95
  • Table98: Table 96
  • Table99: Table 97
  • Table100: Table 98
  • Table101: Table 99
  • Table102: MassDistribution of theNominal -12, -26 Series in Fraction 3 n
  • Table103: Table 100
  • Table104: Table 101
  • Table105: Table 102
  • Table106: Table 103
  • Table107: Table 104
  • Table108: Table 105
  • Table109: Table 106
  • Table110: Table 107
  • Table111: Table 108
  • Table112: Table 109
  • Table113: Table 110
  • Table114: Homologous Series of Polycyclic AromaticHydrocarbons in Sediments at Station A
Download tables as Excel
基金
  • Supported by ONR ( N O 0 14-66 Contract CO-241) and by the National Science Foundation (Grant GA35646)
  • Giger’s efforts a t Woods Hole were supported by the Swiss National Research Foundation for the Advancement of Science and the Swiss Department of Commerce (Project COST 64b)
作者
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科