Multiparticle Bose-Einstein Correlations (Vol C57, Pg 3324, 1998)

PHYSICAL REVIEW C(2000)

引用 1|浏览1
暂无评分
摘要
Multiparticle symmetrization effects are contributions to the spectra of Bose-symmetrized states which are not the product of pairwise correlations. Usually they are neglected in particle interferometric calculations which aim at determining the geometry of the boson emitting source from the measured momentum distributions. Based on a method introduced by Zajc and Pratt, we give a calculation of all multiparticle symmetrization effects to the one- and two-particle momentum spectra for a Gaussian phase space distribution of emission points. Our starting point is an ensemble of N-particle Bose-symmetrized wavefunctions with specified phase space localization. In scenarios typical for relativistic heavy ion collisions, multiparticle effects steepen the slope of the one-particle spectrum for realistic particle phase space densities by up to 20 MeV, and they broaden the relative momentum dependence of the two-particle correlations. We discuss these modifications and their consequences in quantitative detail. Also, we explain how multiparticle effects modify the normalization of the two-particle correlator. The resulting normalization conserves event probabilities, which is not the case for the commonly used pair approximation. Finally, we propose a new method of calculating Bose-Einstein weights from the output of event generators, taking multiparticle correlations into account.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要