A Global Calculation Of The Delta C-13 Of Soil Respired Carbon: Implications For The Biospheric Uptake Of Anthropogenic Co2

GLOBAL BIOGEOCHEMICAL CYCLES(1999)

引用 60|浏览11
暂无评分
摘要
The continuing emissions of fossil CO2 depleted in C-13 have been causing a gradual decrease in atmospheric delta(13)C by roughly 1.4 parts per thousand since preindustrial times. The progressive penetration of this perturbation into the land biota causes the soil organic matter to be enriched in 13C with respect to recently formed plant material. This effect which we call the "biotic isotope disequilibrium" is important when it comes to deducing the terrestrial carbon fluxes by using delta(13)C in atmospheric CO2. We have estimated the geographical distribution of the isotopic disequilibrium, which is primarily influenced by the turnover of carbon in the various ecosystems, from the output of two biospheric models, (SLAVE and CENTURY). The disequilibrium is estimated to shift up the delta(13)C of atmospheric CO2 by the same amount as a net sink of 0.6 Gt C yr(-1) in the land biota. This "fake" terrestrial sink due to the isotopic disequilibrium is distributed mainly in northern midlatitudes (0.2 Gt C yr(-1)) and tropical forests (0.3 Gt C yr(-1)).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要