AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
The results of this study indicate the importance of homogeneous chemistry as a pollutant transformation process in indoor atmospheres

Mathematical modeling of chemically reactive pollutants in indoor air.

ENVIRONMENTAL SCIENCE & TECHNOLOGY, no. 9 (1986): 924-934

被引用280|浏览5
WOS
下载 PDF 全文
引用
微博一下

摘要

A general mathematical model is presented for predicting the concentrations of chemically reactive compounds in indoor air. The model accounts for the effects of ventilation, filtration, heterogeneous removal, direct emission, and photolytic and thermal chemical reactions. The model is applied to the induction of photochemically reactive ...更多

代码

数据

0
简介
  • Considerable progress has been made recently in developing mathematical models for predicting pollutant concentrations in ambient air.
  • Some of the most stringent standards for indoor air quality are specified for museums, archives, and rare book libraries.
  • Since these collections must be preserved indefinitely, even very slow rates of deterioration could lead to unacceptable accumulated damage.
  • Analytical tools are needed both to predict the levels of chemically complex mixtures that will occur in new buildings prior to their construction and to diagnose the source of pollutants present in existing facilities.
重点内容
  • Considerable progress has been made recently in developing mathematical models for predicting pollutant concentrations in ambient air
  • Simulations are conducted of pollutant levels in a newly constructed museum on the basis of data taken for this purpose at the Virginia Steele Scott Gallery in San Marino, CA
  • The full kinetic model is slightly better in predicting indoor ozone concentrations, during the morning hours when the presence of a significant nitric oxide concentration constitutes a substantial sink for ozone by reaction 3
  • The results of this study indicate the importance of homogeneous chemistry as a pollutant transformation process in indoor atmospheres
  • Efforts to determine the rates of mixing in indoor air and to examine the effect of poor mixing on the apparent rates of chemical reaction are recommended
  • The basis of describing indoor air motion is partially established in numerical codes for natural convection in enclosures [30]
结果
  • At most times the measured NO, and NOz*concentrations are seen to lie between the results for the base case and "low NOz wall loss" simulations.
  • The "low NOz wall loss" case predicts a total NO, concentration that is closer to the measured value (5% high) than is the result for the base case simulation (14% low)
结论
  • The results of this study indicate the importance of homogeneous chemistry as a pollutant transformation process in indoor atmospheres.
  • A model that employs an explicit description of air motion at scales smaller than the dimension of the rooms would be considerablymore difficult to validate and costly to apply than the present approach.
  • It could prove quite useful in examining the validity of the uniformly mixed model and in treating the mass-transport aspects of surface reaction on a more fundamental basis
总结
  • Introduction:

    Considerable progress has been made recently in developing mathematical models for predicting pollutant concentrations in ambient air.
  • Some of the most stringent standards for indoor air quality are specified for museums, archives, and rare book libraries.
  • Since these collections must be preserved indefinitely, even very slow rates of deterioration could lead to unacceptable accumulated damage.
  • Analytical tools are needed both to predict the levels of chemically complex mixtures that will occur in new buildings prior to their construction and to diagnose the source of pollutants present in existing facilities.
  • Results:

    At most times the measured NO, and NOz*concentrations are seen to lie between the results for the base case and "low NOz wall loss" simulations.
  • The "low NOz wall loss" case predicts a total NO, concentration that is closer to the measured value (5% high) than is the result for the base case simulation (14% low)
  • Conclusion:

    The results of this study indicate the importance of homogeneous chemistry as a pollutant transformation process in indoor atmospheres.
  • A model that employs an explicit description of air motion at scales smaller than the dimension of the rooms would be considerablymore difficult to validate and costly to apply than the present approach.
  • It could prove quite useful in examining the validity of the uniformly mixed model and in treating the mass-transport aspects of surface reaction on a more fundamental basis
表格
  • Table1: Table 1
  • Table2: Table 2
  • Table3: Table 3
  • Table4: Table 4
  • Table5: Table 5
  • Table6: Table 6
  • Table7: Table 7
  • Table8: Table 8
  • Table9: Table 9
  • Table10: Kinetic Mechanism [<a class="ref-link" id="c1" href="#r1">1</a>,<a class="ref-link" id="c2" href="#r2">2</a>,<a class="ref-link" id="c20" href="#r20">20</a>,<a class="ref-link" id="c21" href="#r21">21</a>,<a class="ref-link" id="c22" href="#r22">22</a>]
  • Table11: Source and Sink Rates (ppb h-’) in Scott Gallery for Selected Species and Simulations: Average for November 4 a n d 5, 1984 species NO NO2
  • Table12: Table 10
  • Table13: Coefficients Used To Determine Photolysis Rates (219 22)
  • Table14: Table 12
  • Table15: Table 13
  • Table16: Table 14
  • Table17: Table 15
  • Table18: Table 16
  • Table19: Table 17
  • Table20: Table 18
  • Table21: Table 19
  • Table22: Table 20
  • Table23: Table 21
  • Table24: Table 22
  • Table25: Table 23
  • Table26: Table 24
  • Table27: Table 25
  • Table28: Table 26
  • Table29: Table 27
  • Table30: Table 28
  • Table31: Table 29
  • Table32: Table 30
  • Table33: Table 31
  • Table34: Table 32
  • Table35: Table 33
  • Table36: Table 34
  • Table37: Table 35
  • Table38: Table 36
  • Table39: Table 37
  • Table40: Table 38
  • Table41: Table 39
  • Table42: Table 40
  • Table43: Table 41
  • Table44: Table 42
  • Table45: Table 43
  • Table46: Table 44
  • Table47: Table 45
  • Table48: Table 46
  • Table49: Table 47
  • Table50: Table 48
  • Table51: Table 49
  • Table52: Table 50
  • Table53: Table 51
  • Table54: Table 52
  • Table55: Table 53
  • Table56: Table 54
  • Table57: Table 55
  • Table58: Table 56
  • Table59: Table 57
  • Table60: Table 58
  • Table61: Table 59
  • Table62: Table 60
  • Table63: Table 61
  • Table64: Table 62
  • Table65: Table 63
  • Table66: Table 64
  • Table67: Table 65
  • Table68: Table 66
  • Table69: Table 67
  • Table70: Table 68
  • Table71: Table 69
  • Table72: Table 70
  • Table73: Table 71
  • Table74: Table 72
  • Table75: Table 73
  • Table76: Table 74
  • Table77: Table 75
  • Table78: Table 76
  • Table79: Table 77
  • Table80: Table 78
  • Table81: Table 79
  • Table82: Table 80
  • Table83: Table 81
  • Table84: Table 82
  • Table85: Table 83
  • Table86: Table 84
  • Table87: Table 85
  • Table88: Table 86
  • Table89: Table 87
  • Table90: Table 88
  • Table91: Table 89
  • Table92: Table 90
  • Table93: Table 91
  • Table94: Table 92
  • Table95: Table 93
  • Table96: Table 94
  • Table97: Table 95
  • Table98: Table 96
  • Table99: Table 97
  • Table100: Table 98
  • Table101: Table 99
  • Table102: Simulation Input Parameters deposition vel, cm s-l
  • Table103: Species Concentrations (ppb) in Scott Gallery: Average for November 4 and 5, 1984 outdoor
  • Table104: Table 100
  • Table105: Table 101
  • Table106: Table 102
  • Table107: Table 103
  • Table108: Table 104
  • Table109: Table 105
  • Table110: Table 106
  • Table111: Table 107
  • Table112: Table 108
  • Table113: Table 109
  • Table114: Table 110
  • Table115: Measurements of Indoor Deposition Velocity species
Download tables as Excel
基金
  • The research was supported by a contract with the Getty Conservation Institute and by an Earle C
研究对象与分析
species: 3
NO^ + OPP). 99.1 also employed to determine the outdoor concentrations of these three species and HN04, H02, NO3, N205,RCOs, RN04, and R 0 2as has been done in simulating outdoor air pollution [27]. Heterogeneous Reactions

species: 15
Further research is needed to resolve the discrepancy with studies of radon decay-product removal at surfaces, Outdoor Concentrations. With the current chemical mechanism, the model requires as input the hourly averaged outdoor concentration of 15 species or groups of species. These data may be obtained by direct outdoor measurement or from a photochemical air-quality model that describes the chemical evolution of the outdoor air over time [1,20]

species: 15
Initial Conditions. The initial indoor pollutant concentrations are treated in the same way as the outdoor concentrations: concentrations of 15 species are specified, and the remaining 10 are computed assuming that steady-state conditions prevail. For most buildings, simulation results are relatively insensitive to changes in the initial conditions: the limiting characteristic time associated with a perturbed initial condition is given by the inverse air-exchange rate which in many cases is less than 1 h

pollutants: 15
Other species (e.g., CO) are assumed to be sufficiently inert that their removal rates at building surfaces are negligible. Data on outdoor concentrations of the 15 pollutants required by the model were specified by the following approach. The outdoor monitoring data on 03,NO, and NO2* collected on site were used

remaining cases: 3
“multi~hamberc’~ase addresses the magnitude of errors resulting from assuming that this building may be represented as a single well-mixed chamber. The three remaining cases were selected to examine how changes in building design or operation could influence indoor pollutant concentrations through chemical reaction. The case with an “indoor hydrocarbon source” could represent a situation in which fumes from an underground parking garage enter the building, or a case in which solvents are used within the building

引用论文
  • (1) McRae, G. J.; Goodin, W. R.; Seinfeld, J. H. Atmos. Environ. 1982, 16, 679-696.
    Google ScholarFindings
  • (2) McRae, G. J.; Seinfeld, J. H. Atmos. Enuiron. 1983, 17, 501-522.
    Google ScholarFindings
  • (3) Ruff, R. E.;Nitz, K. C.; Ludwig, F. L.; Bhumralkar, C. M.; Shannon, J. D.; Sheih, C. M.; Lee, I. Y.; Kumar, R.; McNaughton, D. J. Atmos. Enuiron. 1985,19,1103-1115.
    Google ScholarFindings
  • (4) Shair, F. H.; Heitner, K. L. Enuiron. Sci. Technol. 1974, 8, 444-451.
    Google ScholarLocate open access versionFindings
  • (5) Traynor, G. W.; Anthon, D. W.; Hollowell, C. D. Atmos. Environ. 1982,16, 2979-2987.
    Google ScholarLocate open access versionFindings
  • (6) Yamanaka, S. Enuiron. Sci. Technol. 1984, 18, 566-570.
    Google ScholarLocate open access versionFindings
  • (7) Fisk, W. J. In Indoor Air: Buildings Ventilation and
    Google ScholarLocate open access versionFindings
  • Thermal Climate;Berglund, B.; Lindvall, T.; Sundell, J., Eds.; Swedish Council for Building Research Stockholm, 1984; Vol. 5, pp 187-192.
    Google ScholarFindings
  • (8) Hernandez, T. L.; Ring, J. W. Environ. Int. 1982,8,45-57.
    Google ScholarLocate open access versionFindings
  • (9) Ozkaynak, H.; Ryan, P. B.; Allen, G. A,; Turner, W. A. Enuiron. Int. 1982, 8, 461-471.
    Google ScholarLocate open access versionFindings
  • (10) Davidson, C. I.; Osborn, J. F.; Fortmann, R. C. In Indoor Air: Chemical Characterizationand Personal Exposure; Berglund,B.; Lindvall,T.; Sundell,J.,Eds.; Swedish Council for Building Research Stockholm, 1984;Vol. 4, pp 69-74.
    Google ScholarFindings
  • (11) Schiller, G. E. Ph.D. Thesis, University of California, Berkeley, 1984.
    Google ScholarFindings
  • (12) Sabersky, R. H.; Sinema, D. A.; Shair, F. H. Environ. Sci. Technol. 1973, 7, 347-353.
    Google ScholarLocate open access versionFindings
  • (13) Shair, F. H. ASHRAE Trans. 1981, 87(Part I), 116-139.
    Google ScholarFindings
  • (14) Berglund, B.; Linvdall, T.; Sundell, J., Eds. Indoor Air; Swedish Council for Building Research: Stockholm, 1984; 5 vola.
    Google ScholarFindings
  • (15) Sinden, F. W. Build. Environ. 1978, 13, 21-28.
    Google ScholarFindings
  • (16) Sherman, M. H. Ph.D. Thesis, University of California, Berkeley, 1980.
    Google ScholarFindings
  • (17) Hecht, T. A.; Seinfeld, J. H. Enuiron. Sci. Technol. 1972, 6, 47-57.
    Google ScholarLocate open access versionFindings
  • (18) Hecht, T. A.; Seinfeld, J. H.; Dodge, M. C. Environ. Sci. Technol. 1974,8, 327-339.
    Google ScholarLocate open access versionFindings
  • (19) Falls, A. H.; Seinfeld, J. H. Enuiron. Sci. Technol. 1978, 12, 1398-1406.
    Google ScholarLocate open access versionFindings
  • (20) Russell, A. G.; McRae, G. J.; Cass, G. R. Atmos. Environ. 1985,19,893-903.
    Google ScholarFindings
  • (21) Baulch, D. L.; Cox, R. A.; Crutzen, P. J.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J.;Watson, R. T. J.Phys. Chem.Ref. Data 1982, 11, 327-496.
    Google ScholarLocate open access versionFindings
  • (22) McRae, G. J. Ph.D. Thesis, California Institute of Technology, Pasadena, 1982.
    Google ScholarFindings
  • (23) Hall, E. T. In London Conferenceon Museum Climatology; International Institute for Conservation: London, 1967;pp 151-157.
    Google ScholarLocate open access versionFindings
  • (24) Thomson, G. In London Conference on Museum Climatology;International Institute for Conservation: London, 1967.
    Google ScholarLocate open access versionFindings
  • Jackson, J. 0.;Stedman, D. H.; Smith, R. G.; Hecker, L. H.; Warner, P. 0. Rev. Sci. Instrum. 1975, 46, 376-378.
    Google ScholarLocate open access versionFindings
  • Seinfeld, J. H. Atmospheric Chemistry and Physics of Air Pollution; Wiley: New York, 1985.
    Google ScholarFindings
  • McRae, G. J.; Goodin, W. R.; Seinfeld, J. H. J. Comput. Phys. 1982,45,1-42.
    Google ScholarLocate open access versionFindings
  • Pitts, J. N., Jr.; Wallington, T. J.;Biermann, H. W.; Winer, A. M. Atmos. Environ. 1985, 19, 763-767.
    Google ScholarFindings
  • Besemer, A. C.; Nieboer, H. Atmos. Enuiron. 1985, 19, 507-513.
    Google ScholarFindings
  • Gadgil, A. J. Ph.D. Thesis, University of California, Berkeley, 1980.
    Google ScholarFindings
  • Eckert, E. R. G.; Drake, R. M., Jr. Analysis of Heat and Mass Transfer; McGraw-Hill: New York, 1972; p 528.
    Google ScholarFindings
  • Environ. Sci. Technol., Vol. 20, No. 9, 1986 933
    Google ScholarLocate open access versionFindings
  • Environ. Sci. Technol. 1906, 20, 934-938 (32) Wilson, M. J. G. Proc. R. SOCL. ondon, Ser. A 1968, A307, 215-22 1.
    Google ScholarLocate open access versionFindings
  • (33) Knutson, E. 0. In Radon and Its Progeny in Indoor Air; Nazaroff, W. W.; Nero, A. V., Eds.; CRC Press: Boca Raton, FL; in press.
    Google ScholarFindings
  • (34) Young, T. R.; Boris, J. P. J. Phys. Chem. 1977, 81, 2424-2427.
    Google ScholarLocate open access versionFindings
  • (35) Baer, N. S.;Banks, P. N. Int. J. Museum Manage. Curatorship 1985, 4, 9-20.
    Google ScholarLocate open access versionFindings
  • (36) Mathey, R. G.; Faison, T. K.; Silberstein, S.; Woods, J. E.; Johnson, W. B.; Lull, W. P.; Madson, C. A.; Turk, A.; Westlin, K. L.; Banks, P. N. Air Quality Criteriafor Storage of Paper-Based Archival Records; National Bureau of
    Google ScholarFindings
  • Standards: Washington, DC, 1983; NBSIR 83-2795.
    Google ScholarFindings
  • (37) Winer, A. M.; Peters, J. W.; Smith, J. P.; Pitts, J. N., Jr.
    Google ScholarFindings
  • Environ. Sci. Technol. 1974, 8, 1118-1121.
    Google ScholarFindings
  • (38) Hanst, P. L.; Wong, N. W.; Bragin, J. Atmos. Enuiron. 1982, 16, 969-981.
    Google ScholarFindings
  • (39) Tuazon, E. C.; Winer, A. M.; Pitts, J. N., Jr. Enuiron. Sci. Technol. 1981,15, 1232-1231.
    Google ScholarLocate open access versionFindings
  • (40) Russell, A. G.; Caw, G. R. Atmos. Environ., in press.
    Google ScholarFindings
  • (41) Grosjean, D.; Fung, K. J. Air Pollut. Control Assoc. 1984, 34, 531-543.
    Google ScholarLocate open access versionFindings
  • (42) Russell, A. G., Carnegie-Mellon University, personal communication, 1985.
    Google ScholarFindings
  • (43) Pitts, J. N., Jr.; Sweetman, J. A.; Zielinska, B.; Atkinson, R.; Winer, A. M.; Harger, W. P. Enuiron. Sci. Technol. 1985, 19,1115-1121.
    Google ScholarLocate open access versionFindings
  • (44) Mueller, F. X.; Loeb, L.; Mapes, W. H. Environ. Sci. Technol. 1973, 7, 342-346.
    Google ScholarLocate open access versionFindings
  • (45) Sutton, D. J.; Nodolf, K. M.; Makino, K. K. ASHRAE J. 1976, 18(9), 21-26.
    Google ScholarFindings
  • (46) Traynor, G. W.; Apte, M. G.; Dillworth, J. F.; Hollowell, C. D.; Sterling, E. M. Environ. Int. 1982, 8, 441-452.
    Google ScholarLocate open access versionFindings
  • (47) Wade, W. A., 111; Cote, W. A,; Yocum, J. E. J. Air Pollut. Control Assoc. 1975,25, 933-939.
    Google ScholarLocate open access versionFindings
  • (48) Miyazaki, T. In Indoor Air: Chemical Characterization and Personal Exposure; Berglund, B.; Lindvall, T.; Sundell, J.,Eds.; Swedish Council for Building Research Stockholm, 1984; Vol. 4, pp 103-110.
    Google ScholarFindings
  • (49) Revzan, K. L. In Indoor Air: Building Ventilation and Thermal Climate;Berglund, B.; Lindvall, T.;Sundell, J., Eds.; Swedish Council for Building Research: Stockholm, 1984; Vol. 5, p p 65-72.
    Google ScholarFindings
  • (50) Summer, W. Ultraviolet and Infra-Red Engineering; Interscience Publishers: New York, 1962; p 60.
    Google ScholarFindings
  • 934 Environ. Sci. Technol., Vol. 20, No. 9, 1986
    Google ScholarLocate open access versionFindings
  • 0013-936X/86/0920-0934$0 1.50/0 0 1986 American Chemical Society
    Google ScholarFindings
您的评分 :
0

 

标签
评论
小科