Stabilization of Metals in Subsurface by Biopolymers: Laboratory Drainage Flow Studies

SOIL & SEDIMENT CONTAMINATION(2010)

引用 48|浏览8
暂无评分
摘要
Environmental contamination with heavy metals and radionuclides remains a major problem worldwide. The current clean-up methodologies are based on energy-intensive engineering processes, which are disruptive and costly. A new universal technology targeted for the permanent enclosure and fixation of nuclear and other extreme hazardous metallic wastes in subsurface sites is needed. Such technology will be useful in treating contamination at many sites in the U.S., with specific applications to Department of Energy (DOE) sites. Bippolymers are potential tools for such an innovative technology. Bidpolymers have repeated sequences, and therefore provide ample opportunity for chemical reactions with metals, soil particles, and other biopolymers. They also have the additional ability of creating cross-linking interpenetrating networks that can encapsulate the contaminants. Based on this concept, in the present work five biopolymers (xanthan, chitosan, polyhydroxy butyrate, guar gum, polyglutamic acid) were investigated for potential use in the stabilization of metals in the subsurface. The effects of these biopolymers (used alone and in combinations) on soil characteristics (permeability, shear strength) and their metal uptake ability have been studied using laboratory drainage flow systems. Biopolymer solutions were run through the experimental sandpack columns, followed by copper solution and leaching agents (distilled water and hydrochloric acid). The permeability and shear strength of sand were evaluated. Copper uptake capacity of each biopolymer and combination of biopolymers was also studied along with subsequent leaching. All biopolymers tested improved sand characteristics (by decreasing permeability and increasing shear strength) and had good metal uptake ability (60-90%) with relatively low leachability (10-22%). While biopolymers used alone were more efficient in metal uptake, the combination of two biopolymers (xanthan and chitosan) had an increasing plugging effect. These results show the potential of using biopolymers in subsurface metal stabilization.
更多
查看译文
关键词
biopolymers,metal encapsulation,soil stabilization,permeability,shear strength,drainage flow studies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要