AI helps you reading Science

AI generates interpretation videos

AI extracts and analyses the key points of the paper to generate videos automatically


pub
Go Generating

AI Traceability

AI parses the academic lineage of this thesis


Master Reading Tree
Generate MRT

AI Insight

AI extracts a summary of this paper


Weibo:
The reorientation times resulting from the mechanism can be analytically described by an extended jump model

On the molecular mechanism of water reorientation.

JOURNAL OF PHYSICAL CHEMISTRY B, no. 45 (2008): 14230-14242

Cited by: 306|Views6
WOS

Abstract

We detail and considerably extend the analysis recently presented in Science 2006, 311, 832-835 of the molecular mechanism of water reorientation based on molecular dynamics simulations and the analytic framework of the extended jump model (EJM). The water reorientation is shown to occur through large-amplitude angular jumps due to the ex...More

Code:

Data:

0
Introduction
  • Many of liquid water’s special and ubiquitous properties originate from its propensity to form very dynamic, labile hydrogen (H)-bond networks.[1,2,3,4,5] A major fashion in which this network constantly rearranges by breaking and forming H-bonds is through the reorientation of water molecules
  • This rearrangement occurs when the water hydration pattern adapts to a changing solute, and water reorientation is at the heart of hydration dynamics.
  • Water reorientation determines the hydration layer lability around biological macromolecules such as proteins or DNA strands and conditions the biomolecule flexibility and function, such as the selective molecular recognition of ligands.[2,13,14]
Highlights
  • Many of liquid water’s special and ubiquitous properties originate from its propensity to form very dynamic, labile hydrogen (H)-bond networks.[1,2,3,4,5] A major fashion in which this network constantly rearranges by breaking and forming H-bonds is through the reorientation of water molecules
  • The jump reorientation mechanism that we find in liquid water differs from the mechanisms found in small water clusters or in ice. In clusters,[47] the mechanism proceeds through a transition-state structure which minimizes the energy cost associated with H-bond breaking, as in the liquid, but the many dangling OHs in the cluster provide many more degrees of freedom to the reorienting waters than in the bulk where the waters are H-bonded to their neighbors, and the reorientation mechanisms are significantly different
  • We have described in detail an extended jump mechanism for the reorientation of water in solution originally presented in ref 21
  • This mechanism involves the exchange of H-bond acceptors, which we analyze as a chemical reaction
  • We have shown that the rate-limiting step is the antisymmetric translational motion of arrival of a new partner and the departure of the previous partner and not the H-bond breaking as commonly assumed
  • The reorientation times resulting from the mechanism can be analytically described by an extended jump model (EJM)
Results
  • Exciting water molecules on the blue edge of the absorption band will not select water molecules close to the transition state, even though their fraction in the selected ensemble will be larger than that for frequencies in the center of the band.
  • This is exemplified more quantitatively by the plot in Figure 8 of the probability to be within a 125 fs delay of the transition state for different ωOH values; for example, even for the most blue-shifted frequencies, only approximately 20% of the selected systems are within 125 fs of the transition state
Conclusion
  • The authors have described in detail an extended jump mechanism for the reorientation of water in solution originally presented in ref 21
  • This mechanism involves the exchange of H-bond acceptors, which the authors analyze as a chemical reaction.
  • It involves large-amplitude jumps, which contrast with the sequence of very small reorientations as assumed in the diffusive model often adopted.
  • The reorientation times resulting from the mechanism can be analytically described by an extended jump model (EJM)
Tables
  • Table1: Reorientation Times Obtained Respectively from Our MD Simulations, The Diffusive Model, The Simple Jump Model, The Frame Reorientation between the Jumps, the EJM, and the Experimentsa
  • Table2: Comparison of the Reorientation Times
  • Table3: Temperature Dependence of the Free-Energy Barrier ∆G‡ and That of the Transmission Coefficient K
Download tables as Excel
Funding
  • This work was supported in part by NSF Grants CHE-0417570 and CHE-0750477
Reference
  • (1) Eisenberg, D.; Kauzmann, W. The Structure and Properties of Water; Oxford Clarendon Press: London, 1969.
    Google ScholarFindings
  • (2) Bagchi, B. Chem. ReV. 2005, 105, 3197–3219.
    Google ScholarFindings
  • (3) Ohmine, I.; Tanaka, H. Chem. ReV. 1993, 93, 2545–2566.
    Google ScholarFindings
  • (4) Fecko, C. J.; Eaves, J. D.; Loparo, J. J.; Tokmakoff, A.; Geissler, P. L. Science 2003, 301, 1698–1702.
    Google ScholarLocate open access versionFindings
  • (5) Rey, R.; Møller, K. B.; Hynes, J. T. J. Phys. Chem. A 2002, 106, 11993–11996.
    Google ScholarLocate open access versionFindings
  • (6) Gertner, B. J.; Whitnell, R. M.; Wilson, K. R.; Hynes, J. T. J. Am. Chem. Soc. 1991, 113, 74–87.
    Google ScholarLocate open access versionFindings
  • (7) Ando, K.; Hynes, J. T. J. Mol. Liq. 1995, 64, 25–37.
    Google ScholarFindings
  • (8) Ando, K.; Hynes, J. T. J. Phys. Chem. B 1997, 101, 10464–10478.
    Google ScholarLocate open access versionFindings
  • (9) Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. Nature 1999, 397, 601–604.
    Google ScholarLocate open access versionFindings
  • (10) Agmon, N. Chem. Phys. Lett. 1995, 244, 456–462.
    Google ScholarFindings
  • (11) Cukierman, S. Biochim. Biophys. Acta 2006, 1757, 876–885.
    Google ScholarLocate open access versionFindings
  • (12) Pomes, R.; Roux, B. Biophys. J. 1996, 71, 19–39.
    Google ScholarFindings
  • (13) Levy, Y.; Onuchic, J. N. Annu. ReV. Biophys. Biomol. Struct. 2006, 35, 389–415.
    Google ScholarLocate open access versionFindings
  • (14) Chaplin, M. Nat. ReV. Mol. Cell Bio. 2006, 7, 861–866.
    Google ScholarLocate open access versionFindings
  • (15) Podeszwa, R.; Buch, V. Phys. ReV. Lett. 1999, 83, 4570–4573.
    Google ScholarLocate open access versionFindings
  • (16) Rahman, A.; Stillinger, F. H. J. Chem. Phys. 1971, 55, 3336– 3359.
    Google ScholarLocate open access versionFindings
  • (17) O’Reilly, D. E. J. Chem. Phys. 1974, 60, 1607–1618.
    Google ScholarLocate open access versionFindings
  • (18) van der Spoel, D.; van Maaren, P. J.; Berendsen, H. J. C. J. Chem. Phys. 1998, 108, 10220–10230.
    Google ScholarLocate open access versionFindings
  • (19) Winkler, K.; Lindner, J.; Borsing, H.; Vohringer, P. J. Chem. Phys. 2000, 113, 4674–4682.
    Google ScholarLocate open access versionFindings
  • (20) Debye, P. Polar Molecules; The Chemical Catalog Company: New York, 1929.
    Google ScholarFindings
  • (21) Laage, D.; Hynes, J. T. Science 2006, 311, 832–835.
    Google ScholarLocate open access versionFindings
  • (22) In the analysis of experiments, the Debye diffusional model is often combined via the Einstein relation between the diffusion constant and the friction constant and a hydrodynamic model for the friction constant to produce the Debye-Stokes-Einstein relation in which DR is inversely proportional to the solvent viscosity. The relationship between the rotational friction and the viscosity is logically distinct from eq 2, as already noted by Debye.20 (23) Mazza, M. G.; Giovambattista, N.; Starr, F. W.; Stanley, H. E. Phys. ReV. Lett. 2006, 96, 057803.
    Google ScholarLocate open access versionFindings
  • (24) Svishchev, I. M.; Kusalik, P. G. J. Phys. Chem. 1994, 98, 728– 733.
    Google ScholarLocate open access versionFindings
  • (25) Kumar, R.; Schmidt, J. R.; Skinner, J. L. J. Chem. Phys. 2007, 126, 204107.
    Google ScholarLocate open access versionFindings
  • (26) Tuckerman, M. E.; Marx, D.; Parrinello, M. Nature 2002, 417, 925–929.
    Google ScholarLocate open access versionFindings
  • (27) Lange, O.; Lakomek, N.; Fares, C.; Schroder, G.; Walter, K. F. A.; Becker, S.; Meiler, J.; Grubmuller, H.; Griesinger, C.; de Groot, B. L. Science 2008, 320, 1471–1475.
    Google ScholarLocate open access versionFindings
  • (28) Boehr, D.; Wright, P. Science 2008, 320, 1429–1430.
    Google ScholarLocate open access versionFindings
  • (29) The rearrangement of the environment also involves the orientation of the Ob water with respect to O*H*, which is initially random and evolves to the proper configuration to receive a H-bond from H*, where the two hydrogens on Ob point away from H*. (30) We note that this mechanism evidences that in liquid water, largeamplitude rotations are coupled with translational motion since the reorientation involves an exchange of water molecules within the first shell of O*. The jump reorientation mechanism is therefore likely to be also intrinsically related to translational motion in water, a topic under investigation (Laage, D.; Møller, K. B.; Hynes, J. T. in progress).
    Google ScholarFindings
  • (31) Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: New York, 1964.
    Google ScholarFindings
  • (32) Ludwig, R. ChemPhysChem 2007, 8, 44–46.
    Google ScholarLocate open access versionFindings
  • (33) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269–6271.
    Google ScholarLocate open access versionFindings
  • (34) Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2006, 125, 194522.
    Google ScholarLocate open access versionFindings
  • (35) Paesani, F.; Iuchi, S.; Voth, G. A. J. Chem. Phys. 2007, 127, 074506.
    Google ScholarLocate open access versionFindings
  • (36) Laage, D.; Hynes, J. T. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 11167–11172.
    Google ScholarFindings
  • (37) Harpham, M. R.; Levinger, N. E.; Ladanyi, B. M. J. Phys. Chem. B 2008, 112, 283–293.
    Google ScholarLocate open access versionFindings
  • (38) Park, S.; Fayer, M. D. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 16731–16738.
    Google ScholarFindings
  • (39) Rick, S. W. J. Chem. Phys. 2004, 120, 6085–6093.
    Google ScholarLocate open access versionFindings
  • (40) Ponder, J. W. TINKER: Software Tools for Molecular Design, v 4.2; Washington University School of Medecine: Saint Louis, MO, 2004.
    Google ScholarFindings
  • (41) Car, R.; Parrinello, M. Phys. ReV. Lett. 1985, 55, 2471–2474.
    Google ScholarLocate open access versionFindings
  • (42) In addition, first-principles MD techniques suffer from a high computational cost, limiting the trajectory length to a few tens of picoseconds with a simulation box of a few hundred atoms, which is not sufficient here, and the simple DFT functional employed in these simulations is well known to lead to overstructured water.108 (43) Laage, D.; Hynes, J. T. Chem. Phys. Lett. 2006, 433, 80–85.
    Google ScholarLocate open access versionFindings
  • (44) We stress that this moderate frequency dependence of the jump probability should have only a limited impact on the reorientation. Indeed, the higher jump probability applies only as long as the delay between the excitation pulse and the jump is shorter than the frequency decorrelation time of approximately <1.5 ps,109 and at these short delays, the strong frequency dependence of the initial (<200 fs) librational reorientation is already present.43 (45) Garrett-Roe, S.; Hamm, P. J. Chem. Phys. 2008, 128, 104507.
    Google ScholarLocate open access versionFindings
  • (46) Sciortino, F.; Geiger, A.; Stanley, H. E. Nature 1991, 354, 218– 221.
    Google ScholarLocate open access versionFindings
  • (47) Keutsch, F. N.; Saykally, R. J. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 10533–10540.
    Google ScholarFindings
  • (48) The translocation of Bjerrum D defects involves a different mechanism15 with no bifurcated H-bond in the transition-state structure.
    Google ScholarFindings
  • (49) Csajka, F. S.; Chandler, D. J. Chem. Phys. 1998, 109, 1125–1133.
    Google ScholarLocate open access versionFindings
  • (50) Luzar, A. Faraday Discuss. 1996, 103, 29–40.
    Google ScholarFindings
  • (51) Svishchev, I. M.; Kusalik, P. G. Chem. Phys. Lett. 1993, 215, 596–600.
    Google ScholarLocate open access versionFindings
  • (52) Northrup, S. H.; Hynes, J. T. J. Chem. Phys. 1980, 73, 2700– 2714.
    Google ScholarLocate open access versionFindings
  • (53) Grote, R. F.; Hynes, J. T. J. Chem. Phys. 1980, 73, 2715–2732.
    Google ScholarLocate open access versionFindings
  • (54) Ivanov, E. N. SoV. Phys. JETP 1964, 18, 1041–1045.
    Google ScholarLocate open access versionFindings
  • (55) Ropp, J.; Lawrence, C.; Farrar, T. C.; Skinner, J. L. J. Am. Chem. Soc. 2001, 123, 8047–8052.
    Google ScholarLocate open access versionFindings
  • (56) Alessi, L.; Andreozzi, L.; Faetti, M.; Leporini, D. J. Chem. Phys. 2001, 114, 3631–3639.
    Google ScholarLocate open access versionFindings
  • (57) O’Reilly, D. E.; Petersen, E. M. J. Chem. Phys. 1971, 55, 2155– 2163.
    Google ScholarLocate open access versionFindings
  • (58) Diezemann, G.; Sillescu, H. J. Chem. Phys. 1999, 111, 1126– 1136.
    Google ScholarLocate open access versionFindings
  • (59) Our attention has been recently drawn to previous work by O’Reilly which had already suggested, in part motivated by certain unpublished trajectory results of Stillinger and Rahman, that water reorientation occurs through large-amplitude jumps and had used the Ivanov model to determine the reorientation time τ2.17 However, ref 17 assumes that the angular jumps are caused by hard-sphere collisions and that the free-energy barrier lies along the angular coordinate; this is in clear contrast with the H-bond-centered picture we describe here, where, as detailed in section 4.2, the rate-limiting step is the rearrangement of the environment. In addition, no frame reorientation between the jumps is considered in ref 17.
    Google ScholarFindings
  • (60) Hynes, J. T. The Theory of Reactions in Solution. In Theory of Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca Raton, FL, 1985; pp 171-234.
    Google ScholarFindings
  • (61) Chandler, D. Introduction to Modern Statistical Mechanics; Oxford University Press: New York, 1987.
    Google ScholarFindings
  • (62) Laage, D.; Hynes, J. T. J. Phys. Chem. B 2008, 112, 7697–7701.
    Google ScholarLocate open access versionFindings
  • (63) However, for H-bond exchange around solutes such as halide ions, the two times can differ62 since a H-bond exchange can occur before the reorienting water has left the ion hydration shell.
    Google ScholarFindings
  • (64) Rapaport, D. C. Mol. Phys. 1983, 50, 1151–1162.
    Google ScholarLocate open access versionFindings
  • (65) Luzar, A.; Chandler, D. Nature 1996, 379, 55–57.
    Google ScholarLocate open access versionFindings
  • (66) Luzar, A. J. Chem. Phys. 2000, 113, 10663–10675.
    Google ScholarLocate open access versionFindings
  • (67) Chandra, A. Phys. ReV. Lett. 2000, 85, 768–771.
    Google ScholarFindings
  • (68) Szabo, A. J. Chem. Phys. 1984, 81, 150–167.
    Google ScholarLocate open access versionFindings
  • (69) Tjandra, N.; Szabo, A.; Bax, A. J. Am. Chem. Soc. 1996, 118, 6986–6991.
    Google ScholarLocate open access versionFindings
  • (70) Soutar, H. L.; Swanson, L. Macromol. 1994, 27, 4304–4311.
    Google ScholarFindings
  • (71) Smith, D. W. G.; Powles, J. G. Mol. Phys. 1966, 10, 451–463.
    Google ScholarLocate open access versionFindings
  • (72) Lankhorst, D.; Schriever, J.; Leyte, J. C. Ber. Bunsen-Ges. Phys. Chem. 1982, 86, 215.
    Google ScholarLocate open access versionFindings
  • (73) van der Maarel, J. R. C.; Lankhorst, D.; de Bleijser, J.; Leyte, J. C. Chem. Phys. Lett. 1985, 122, 541–544.
    Google ScholarLocate open access versionFindings
  • (74) Ludwig, R.; Weinhold, F.; Farrar, T. C. J. Chem. Phys. 1995, 103, 6941.
    Google ScholarLocate open access versionFindings
  • (75) Rønne, C.; Thrane, L.; Ostrand, P. O.; Wallqvist, A.; Mikkelsen, K. V.; Keiding, S. R. J. Chem. Phys. 1997, 107, 5319–5331.
    Google ScholarLocate open access versionFindings
  • (76) Rønne, C.; Ostrand, P. O.; Keiding, S. R. Phys. ReV. Lett. 1999, 82, 2888–2891.
    Google ScholarLocate open access versionFindings
  • (77) Lang, E.; Ludemann, H. D. J. Chem. Phys. 1977, 67, 718–723.
    Google ScholarLocate open access versionFindings
  • (78) Lang, E.; Ludemann, H. D. Ber. Bunsen-Ges. Phys. Chem. 1980, 84, 462–470.
    Google ScholarLocate open access versionFindings
  • (79) Lang, E. W.; Ludemann, H. D. Ber. Bunsen-Ges. Phys. Chem. 1981, 85, 603–611.
    Google ScholarLocate open access versionFindings
  • (80) Tan, H. S.; Piletic, I. R.; Fayer, M. D. J. Chem. Phys. 2005, 122, 174501.
    Google ScholarLocate open access versionFindings
  • (81) Rezus, Y. L. A.; Bakker, H. J. J. Chem. Phys. 2005, 123, 114502.
    Google ScholarLocate open access versionFindings
  • (82) Teixeira, J.; Bellissent-Funel, M. C.; Chen, S. H.; Dianoux, A. J. Phys. ReV. A 1985, 31, 1913–1917.
    Google ScholarLocate open access versionFindings
  • (83) Abragam, A. The Principles of Nuclear Magnetism; Clarendon: Oxford, UK, 1961.
    Google ScholarFindings
  • (85) If instead of using the average jump angle 〈∆θ〉 to calculate the jump time τ2jump(〈∆θ〉) one uses the jump angle distribution to determine the average jump time 〈τ2jump〉, the extended jump model time τ2 increases to 2.4 ps, in closer agreement with the MD simulation value. The effective jump angle ∆θeff defined as τ2jump(∆θeff) ) 〈τ2jump〉 is then close to 56°.
    Google ScholarLocate open access versionFindings
  • (86) Kell, G. S. J. Chem. Eng. Data 1975, 20, 97–105.
    Google ScholarLocate open access versionFindings
  • (87) Vega, C.; Sanz, E.; Abascal, J. L. F. J. Chem. Phys. 2005, 122, 114507.
    Google ScholarLocate open access versionFindings
  • (88) Speedy, R. J.; Angell, C. A. J. Chem. Phys. 1976, 851–858.
    Google ScholarLocate open access versionFindings
  • (89) Lang, E. W.; Girlich, D.; Ludemann, H. D.; Piculell, L.; Muller, D. J. Chem. Phys. 1990, 93, 4796–4803.
    Google ScholarLocate open access versionFindings
  • (90) Kumar, P.; Franzese, G.; Buldyrev, S. V.; Stanley, H. E. Phys. ReV. E 2006, 73, 041505.
    Google ScholarLocate open access versionFindings
  • (91) Nienhuys, H. K.; van Santen, R. A.; Bakker, H. J. J. Chem. Phys. 2000, 112, 8487–8494.
    Google ScholarLocate open access versionFindings
  • (92) The Debye relaxation time is approximately τD = (3 0)/(2 0 + ∞)τ2, where 0,∞ are the water static and optical dielectric constants, respectively; for water, the temperature dependence of 0 is weak,1 and the temperature dependences of τD and τ2 are therefore similar.
    Google ScholarFindings
  • (93) Chen, S. H.; Teixeira, J. AdV. Chem. Phys. 1986, 64, 1–44.
    Google ScholarLocate open access versionFindings
  • (94) The measured 2-3 kcal/mol activation energy for the proton mobility in water10 is compatible with the activation energy that we determine for water reorientation.
    Google ScholarFindings
  • (95) Walrafen, G. E.; Fisher, M. R.; Hokmabadi, M. S.; Yang, W. H. J. Chem. Phys. 1986, 85, 6970–6982.
    Google ScholarLocate open access versionFindings
  • (96) The OH rotation quantization slightly alters the activation free energy from the classical approximation discussed in section 4.2; we ignore this in the present work.
    Google ScholarFindings
  • (97) Kiefer, P. M.; Hynes, J. T. J. Phys. Chem. A 2003, 107, 9022– 9039.
    Google ScholarLocate open access versionFindings
  • (98) Laage, D.; Hynes, J. T. To be submitted.
    Google ScholarFindings
  • (99) Laage, D.; Stirnemann, G.; Hynes, J. T. To be submitted.
    Google ScholarFindings
  • (100) Smith, W.; Forester, T. R. J. Mol. Graph. 1996, 14, 136–141.
    Google ScholarLocate open access versionFindings
  • (101) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D. J. Chem. Phys. 1983, 79, 926–936.
    Google ScholarLocate open access versionFindings
  • (102) Ren, P. Y.; Ponder, J. W. J. Phys. Chem. B 2003, 107, 5933– 5947.
    Google ScholarLocate open access versionFindings
  • (103) The special character of the angular versus translational diffusion model has, for example, been recognized in ref 23.
    Google ScholarFindings
  • (104) Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate Processes; McGraw-Hill: New York, 1941.
    Google ScholarFindings
  • (105) Fonseca, T.; Kim, H. J.; Hynes, J. T. J. Mol. Liq. 1994, 60, 161– 200.
    Google ScholarFindings
  • (106) Laage, D.; Burghardt, I.; Sommerfeld, T.; Hynes, J. T. J. Phys. Chem. A 2003, 107, 11271–11291.
    Google ScholarLocate open access versionFindings
  • (107) Burghardt, I.; Laage, D.; Hynes, J. T. J. Phys. Chem. A 2003, 107, 11292–11306.
    Google ScholarLocate open access versionFindings
  • (108) VandeVondele, J.; Mohamed, F.; Krack, M.; Hutter, J.; Sprik, M.; Parrinello, M. J. Chem. Phys. 2005, 122, 014515.
    Google ScholarLocate open access versionFindings
  • (109) Harder, E.; Eaves, J. D.; Tokmakoff, A.; Berne, B. J. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 11611–11616.
    Google ScholarFindings
  • (110) Wallqvist, A.; Berne, B. J. J. Phys. Chem. 1993, 97, 13841–13851.
    Google ScholarLocate open access versionFindings
  • (111) Madden, P.; Kivelson, D. AdV. Chem. Phys. 1984, 56, 467–566.
    Google ScholarLocate open access versionFindings
  • (112) Fecko, C. J.; Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2005, 122, 054506.
    Google ScholarLocate open access versionFindings
Your rating :
0

 

Tags
Comments
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科