AI helps you reading Science

AI generates interpretation videos

AI extracts and analyses the key points of the paper to generate videos automatically


pub
Go Generating

AI Traceability

AI parses the academic lineage of this thesis


Master Reading Tree
Generate MRT

AI Insight

AI extracts a summary of this paper


Weibo:
The weight of a particular secondary shift was adjusted by considering the width of its distribution over a narrow range of backbone torsion angles relative to the entire range of secondary chemical shifts in the database

Protein backbone angle restraints from searching a database for chemical shift and sequence homology.

Journal of biomolecular NMR, no. 3 (1999): 289-302

Cited: 3155|Views27
WOS

Abstract

Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide th...More

Code:

Data:

0
Introduction
Highlights
  • The strong dependence of isotropic chemical shifts on protein structure has long been recognized
  • Rather than relying on the information supplied with the deposited chemical shift data, we evaluate the need for applying a correction to 13C shifts by calculating how much, on average, the secondary shifts deviate from the corresponding secondary chemical shifts predicted by the (φ, )-surfaces of Spera and Bax
  • An outline of the prediction method used by TALOS is presented in Figure 1
  • TALOS evaluates the similarity in amino acid sequence and secondary shifts for a string of three sequential amino acids relative to all triplets of sequential residues contained in the database
  • The approach described in this paper is the first to combine both chemical shift and residue type information for predicting backbone torsion angles
  • The weight of a particular secondary shift was adjusted by considering the width of its distribution over a narrow range of backbone torsion angles relative to the entire range of secondary chemical shifts in the database
Methods
  • A database was created which contains nearly complete 13Cα, 13Cβ, 13C , 1Hα and 15N chemical shift assignments of 20 proteins (Table 1), together with the backbone torsion angles φ and , derived from crystal structures solved at a resolution ≤ 2.2 Å.
  • Residues with high temperature (B) factors for the backbone atoms, exceeding 1.5 times the average B-factor for that protein, were excluded
  • This includes the vast majority of cases where differences between crystal and solution structures previously have been noted
Results
  • Description of the search procedure The backbone torsion angle prediction package TALOS (Torsion Angle Likelihood Obtained from Shifts and sequence similarity) is written in the Tcl/Tk language (Ousterhout, 1994) and uses NMRWish, a companion package to the NMRPipe processing and analysis system (Delaglio et al, 1995).
  • TALOS evaluates the similarity in amino acid sequence and secondary shifts for a string of three sequential amino acids relative to all triplets of sequential residues contained in the database.
  • For each query triplet of consecutive residues, the similarity to a triplet with center-residue j in the database is evaluated by computing a similarity factor, S(i, j ), given by:
Conclusion
  • The approach described in this paper is the first to combine both chemical shift and residue type information for predicting backbone torsion angles.
  • The weight of a particular secondary shift was adjusted by considering the width of its distribution over a narrow range of backbone torsion angles relative to the entire range of secondary chemical shifts in the database.
  • The relative importance of the chemical shifts versus residue homology has been adjusted empirically to yield the most reliable predictions for proteins of known structure.
  • Reliability of TALOS predictions is considerably improved when including this residue type homology
Tables
  • Table1: Proteins contained in the database
  • Table2: Empirically optimized k factors, kmn (m: homology, Cα, N, Cβ, C , Hα; n = −1, 0, 1), for weighting the relative importance of a given chemical shift or residue type in determining the similarity score, S(i, j ) of Equation 1
  • Table3: Residue similarity factors, ResType, used by TALOS in Equation 1
  • Table4: Summary of TALOS results when applied to predicting backbone angles of proteins included in the database
Download tables as Excel
Funding
  • Evaluates the need for applying a correction to 13C shifts by calculating how much, on average, the secondary shifts deviate from the corresponding secondary chemical shifts predicted by the -surfaces of Spera and Bax
Reference
  • Ando, I., Saito, H., Tabeta, R., Shoji, A. and Ozaki, T. (1984) Macromolecules, 17, 457–461.
    Google ScholarFindings
  • Archer, S.J., Vinson, V.K., Pollard, T.D. and Torchia, D.A. (1994) FEBS Lett., 337, 145–151.
    Google ScholarLocate open access versionFindings
  • Bax, A. and Tjandra, N. (1997) J. Biomol. NMR, 10, 289–292.
    Google ScholarLocate open access versionFindings
  • Beger, D.B. and Bolton, P.H. (1997) J. Biomol. NMR, 10, 129–142.
    Google ScholarLocate open access versionFindings
  • Berndt, K.D., Guntert, P., Orbons, L.P. and Wüthrich, K. (1992) J.
    Google ScholarFindings
  • Wilson, K.S. (1992) J. Mol. Biol., 223, 427–445.
    Google ScholarLocate open access versionFindings
  • Bewley, C.A., Gustafson, K.R., Boyd, M.R., Covell, D.G., Bax, A., Clore, G.M. and Gronenborn, A.M. (1998) Nat. Struct. Biol., 5, 571–578.
    Google ScholarLocate open access versionFindings
  • Brünger, A.T. (1993) XPLOR Manual, Version 3.1, Yale University, New Haven, CT. Celda, B., Biamonti, C., Arnau, M.J., Tejero, R. and Montelione, G.T. (1995) J. Biomol. NMR, 5, 161–172.
    Google ScholarLocate open access versionFindings
  • Chattopadhyaya, R., Meador, W.E., Means, A.R. and Quiocho, F.A. (1992) J. Mol. Biol., 228, 1177–1192.
    Google ScholarLocate open access versionFindings
  • Clore, G.M., Bax, A., Driscoll, P.C., Wingfield, P. and Gronenborn, A. (1990) Biochemistry, 29, 8172–8184.
    Google ScholarFindings
  • Clore, G.M., Starich, M.R. and Gronenborn, A.M. (1998) J. Am. Chem. Soc., 120, 10571–10572.
    Google ScholarLocate open access versionFindings
  • Concha, N.O., Rasmussen, B.A., Bush, K. and Herzberg, O. (1996) Structure, 4, 823–836.
    Google ScholarFindings
  • Copie, V., Battles, J.A., Schwab, J.M. and Torchia, D.A. (1996) J. Biomol. NMR, 7, 335–340.
    Google ScholarLocate open access versionFindings
  • Davis, J.H., Agard, D.A., Handel, T.M. and Basus, V.J. (1997) J. Biomol. NMR, 10, 21–27.
    Google ScholarLocate open access versionFindings
  • de Dios, A.C. and Oldfield, E. (1993) J. Am. Chem. Soc., 116, 5307– 5314.
    Google ScholarLocate open access versionFindings
  • de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491–1495.
    Google ScholarLocate open access versionFindings
  • Delaglio, F., Grzesiek, S., Vuister, G., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.
    Google ScholarLocate open access versionFindings
  • Drakenberg, T., Hofman, T. and Chazin, W.J. (1989) Biochemistry, 28, 5946–5954.
    Google ScholarFindings
  • Fedorov, A.A., Magnus, K.A., Graupe, M.H., Lattman, E.E., Pollard, T.D. and Almo, S.C. (1994) Proc. Natl. Acad. Sci. USA, 30, 8636–8640.
    Google ScholarLocate open access versionFindings
  • Fogh, R.H., Schipper, D., Boelens, R. and Kaptein, R. (1995) J. Biomol. NMR, 5, 259–270.
    Google ScholarLocate open access versionFindings
  • Fujinaga, M., Delbaere, L.T.J., Brayer, G.D. and James, M.N.G. (1985) J. Mol. Biol., 184, 479–502.
    Google ScholarLocate open access versionFindings
  • Gardner, K.H., Zhang, X., Gehring, K. and Kay, L.E. (1998) J. Am. Chem. Soc., 120, 11738–11748.
    Google ScholarLocate open access versionFindings
  • Gronenborn, A.M. and Clore, G.M. (1994) J. Biomol. NMR, 4, 455– 458.
    Google ScholarLocate open access versionFindings
  • Gronwald, W., Boyko, R.F., Sönnichsen, F.D., Wishart, D.S. and Sykes, B.D. (1997) J. Biomol. NMR, 10, 165–179.
    Google ScholarLocate open access versionFindings
  • Hansen, P.E. (1991) Biochemistry, 30, 10457–10466.
    Google ScholarFindings
  • Hansen, M.R., Rance, M. and Pardi, A. (1998) J. Am. Chem. Soc., 120, 11210–11211.
    Google ScholarLocate open access versionFindings
  • Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659–4667.
    Google ScholarFindings
  • Ikura, M., Kay, L.E., Krinks, M. and Bax, A. (1991) Biochemistry, 30, 5498–5504.
    Google ScholarFindings
  • Ke, H.M., Zydowsky, L.D., Liu, J. and Walsh, C.T. (1991) Proc.
    Google ScholarFindings
  • Kricheldorf, H.R. and Muller, D. (1983) Macromolecules, 16, 615–623.
    Google ScholarFindings
  • Kumar, V. and Kannan, K.K. (1994) J. Mol. Biol., 241, 226–232.
    Google ScholarLocate open access versionFindings
  • Kuntz, I.D., Kosen, P.A. and Craig, E.C. (1991) J. Am. Chem. Soc., 113, 1406–1408.
    Google ScholarLocate open access versionFindings
  • Kuszewski, J., Qin, J., Gronenborn A.M. and Clore, G.M. (1995) J.
    Google ScholarFindings
  • Kuszewski, J., Gronenborn, A.M. and Clore, G.M. (1997) J. Magn.
    Google ScholarFindings
  • Lam, P.Y.S., Jadhav, P.K., Eyerman, C.J., Hodge, C.N., Ru, Y., Bacheler, L.T., Meek, J.L., Otto, M.J., Rayner, M.M., Wong, Y.N., Chang, C.-H., Weber, P.C., Jackson, D.A., Sharpe, T.R. and Erickson-Viitanen, S. (1994) Science, 263, 380–384.
    Google ScholarLocate open access versionFindings
  • Leesong, M., Henderson, B.S., Gillig, J.R., Schwab, J.M. and Smith, J.L. (1996) Structure, 4, 253–256.
    Google ScholarFindings
  • Loll, P.J. and Lattman, E.E. (1989) Proteins Struct. Funct. Genet., 5, 183–201.
    Google ScholarLocate open access versionFindings
  • Longhi, S., Czjzek, M., Lamzin, V., Nicolas, A. and Cambillau, C. (1997) J. Mol. Biol., 268, 779–799.
    Google ScholarLocate open access versionFindings
  • Luginbühl, P., Szyperski T. and Wüthrich, K. (1995) J. Magn. Reson., 109, 229–233.
    Google ScholarLocate open access versionFindings
  • Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 1–23.
    Google ScholarLocate open access versionFindings
  • Meador, W.E., Means, A.R. and Quiocho, F.A. (1992) Science, 257, 1251–1255.
    Google ScholarLocate open access versionFindings
  • Nilges, M., Gronenborn, A.M., Brünger, A.T. and Clore, G.M. (1988) Protein Eng., 2, 27–38.
    Google ScholarLocate open access versionFindings
  • Ösapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215–230.
    Google ScholarLocate open access versionFindings
  • Ottiger, M., Zerbe, O., Güntert, P. and Wüthrich, K. (1997) J. Mol.
    Google ScholarFindings
  • Ousterhout, J.K. (1994) Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA. Pardi, A., Wagner, G. and Wüthrich, K. (1983) Eur. J. Biochem., 137, 445–454.
    Google ScholarLocate open access versionFindings
  • Pastore, A. and Saudek, V. (1990) J. Magn. Reson., 90, 165–176.
    Google ScholarLocate open access versionFindings
  • (1995) J. Am. Chem. Soc., 117, 8823–8829.
    Google ScholarLocate open access versionFindings
  • Pelton, J.G., Torchia, D.A., Meadow, N.D., Wong, C. and Roseman, S. (1991) Biochemistry, 30, 10043–10057.
    Google ScholarFindings
  • Prompers, J.J., Groenewegen, A., van Schaik, R.C., Pepermans, H.A.M. and Hilbers, C.W. (1997) Protein Sci., 6, 2375–2384.
    Google ScholarLocate open access versionFindings
  • Qin, J., Clore, G.C. and Gronenborn, A.M. (1996) Biochemistry, 35, 7–13.
    Google ScholarFindings
  • Redfield, C. and Robertson, J. (1991) Proceedings of a NATO Advanced Research Workshop on Computational Aspects of the Study of Biological Macromolecules by NMR, Plenum Press, New York, NY. Saito, H. (1986) Magn. Reson. Chem., 24, 835–852.
    Google ScholarLocate open access versionFindings
  • Scrofani, S.D.B., Wright, P.E. and Dyson, J.H. (1998) J. Biomol. NMR, 12, 201–202.
    Google ScholarLocate open access versionFindings
  • Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, L. (1991) J. Biomol. NMR, 1, 217–236.
    Google ScholarLocate open access versionFindings
  • Sethson, I., Edlund, U., Holak, T.A., Ross, A. and Johnson, B.-H. (1996) J. Biomol. NMR, 8, 417–428.
    Google ScholarLocate open access versionFindings
  • Sharff, A.J., Rodseth, L.E. and Quiocho, F.A. (1993) Biochemistry, 32, 10553–10559.
    Google ScholarFindings
  • Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5491–5492.
    Google ScholarLocate open access versionFindings
  • Svensson, L.A., Thulin, E. and Forsen, S. (1992) J. Mol. Biol., 223, 601–606.
    Google ScholarLocate open access versionFindings
  • Veerapandian, B., Gilliland, G.L., Raag, R., Svensson, L.A., Masui, Y., Hirai, Y. and Poulos, T.L. (1992) Proteins Struct. Funct. Genet., 12, 10–23.
    Google ScholarLocate open access versionFindings
  • Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol., 194, 531–544.
    Google ScholarLocate open access versionFindings
  • Vuister, G.W., Delaglio, F. and Bax, A. (1992) J. Am. Chem. Soc., 114, 9674–9675.
    Google ScholarLocate open access versionFindings
  • Vuister, G.W., Delaglio, F. and Bax, A. (1993) J. Biomol. NMR, 3, 67–80.
    Google ScholarLocate open access versionFindings
  • Wang, A.C., Grzesiek, S., Tschudin, R., Lodi, P.J. and Bax, A. (1995) J. Biomol. NMR, 5, 376–382.
    Google ScholarLocate open access versionFindings
  • Wang, Y.-X., Marquardt, J.L., Wingfield, P., Stahl, S.J., Lee-Huang, S., Torchia, D.A. and Bax, A. (1998) J. Am. Chem. Soc., 120, 7385–7386.
    Google ScholarLocate open access versionFindings
  • Weichsel, A., Gasdaska, J.R., Powis, G. and Montfort, W.R. (1996) Structure, 15, 735–751.
    Google ScholarFindings
  • Williamson, M. (1990) Biopolymers, 29, 1423–1431.
    Google ScholarFindings
  • Wishart, D.S., Sykes, B.D. and Richards, F. M. (1991) J. Mol. Biol., 222, 311–333.
    Google ScholarLocate open access versionFindings
  • Wishart, D.S. and Sykes, B.D. (1994) J. Biomol. NMR, 4, 171–180.
    Google ScholarLocate open access versionFindings
  • Wishart, D.S., Colin, G.B., Holm, A., Hodges, R.S. and Sykes, B.D. (1995a) J. Biomol. NMR, 5, 67–81.
    Google ScholarLocate open access versionFindings
  • Wishart, D.S., Colin, G.B., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995b) J. Biomol. NMR, 6, 135–140.
    Google ScholarLocate open access versionFindings
  • Wishart, D.S., Watson, M.S., Boyko, R.F. and Sykes, B.D. (1997) J. Biomol. NMR, 10, 329–336.
    Google ScholarLocate open access versionFindings
  • Wlodawer, A., Walter, J., Huber, R. and Sjolin, L. (1984) J. Mol. Biol., 198, 469–480.
    Google ScholarLocate open access versionFindings
  • Worthylake, D., Meadow, N.D., Roseman, S., Liao, D.-I., Herzberg, O. and Remington, S.J. (1991) Proc. Natl. Acad. Sci. USA, 88, 10382–10386.
    Google ScholarLocate open access versionFindings
  • Yamazaki, T., Hinck, A.P., Wang, Y.-X., Nicholson, L.K., Torchia, D.A., Wingfield, P.T., Stahl, S.J., Kaufman, J.D., Chang, C.-H., Domaille, P.J. and Lam, P.Y.S. (1996) Protein Sci., 5, 495–506.
    Google ScholarLocate open access versionFindings
0
Your rating :

No Ratings

Tags
Comments
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn