AI helps you reading Science

AI generates interpretation videos

AI extracts and analyses the key points of the paper to generate videos automatically


pub
Go Generating

AI Traceability

AI parses the academic lineage of this thesis


Master Reading Tree
Generate MRT

AI Insight

AI extracts a summary of this paper


Weibo:
Several recent studies have used fMRI to demonstrate the powerful effects of attention in the precise region of primary visual cortex where the critical stimulus is processed

Testing cognitive models of visual attention with fMRI and MEG.

Neuropsychologia, no. 12 (2001): 1329-1342

Cited: 125|Views48
WOS EI

Abstract

Neuroimaging techniques can be used not only to identify the neural substrates of attention, but also to test cognitive theories of attention. Here we consider four classic questions in the psychology of visual attention: (i) Are some ‘special’ classes of stimuli (e.g. faces) immune to attentional modulation?; (ii) What are the informatio...More

Code:

Data:

0
Introduction
  • The authors can select which stimuli will be analyzed in detail and will be allowed to guide the behavior, making them active participants in the construction of the own perceptual experience.
  • Efforts to understand attention have recruited every method in the toolbox of cognitive neuroscience.
  • This enterprise has led to a wealth of new insights into questions that have been at the heart of attention research since the 1950s and 1960s.
Highlights
  • In this chapter we review recent work from our laboratory using fMRI and MEG to address four key issues concerning visual selective attention
  • Attentional modulation of a stimulus could in principle take place at any stage in visual processing; how early does it occur when the stimuli are faces? While this question has been addressed in the domain of spatial selection using ERP [27], we briefly describe an MEG experiment demonstrating relatively early modulation of face processing that can not be due to spatial orienting
  • We illustrated how the approach developed here can go beyond showing the effects of attention on stimulus representation, to reveal the common mechanisms involved in a wide variety of attentionally-demanding tasks
  • Several recent studies have used fMRI to demonstrate the powerful effects of attention in the precise region of primary visual cortex where the critical stimulus is processed [33,75,77]
  • Recent evidence suggesting the existence of human-voice specific regions of auditory cortex [6] could serve as the analogue of the fusiform face area and parahippocampal place area in studies of auditory attention
Conclusion
  • The authors have used fMRI and MEG markers of face processing, and fMRI markers of place processing, as online measures of the effects of selective attention on visual information processing.
  • These studies revealed converging evidence for attentional modulation of face processing, and showed that this modulation, at least in some circumstances, can occur relatively early in the processing sequence.
  • There are many similarities between the methods developed here and single-unit neurophysiology, with the region of interest playing the role of the single neuron
Funding
  • Portions of this research were supported by a Human Frontiers grant to NK
Reference
  • Aguirre GK, Zarahn E, D’Esposito M. An area within human ventral cortex sensitive to ‘building’ stimuli: evidence and implications. Neuron 1998;21:373 – 83.
    Google ScholarLocate open access versionFindings
  • Allison T, Ginter H, McCarthy G, Nobre AC, Puce A, Luby M, Spencer DD. Face recognition in human extrastriate cortex. Journal of Neurophysiology 1994;71:821 – 5.
    Google ScholarLocate open access versionFindings
  • Allison T, Puce A, Spencer DD, McCarthy G. Electrophysiological studies of human face perception I: potentials generated in occipitotemporal cortex by face and non-face stimuli. Cerebral Cortex 1999;9:415 –30.
    Google ScholarLocate open access versionFindings
  • Baylis GC, Driver J. Visual parsing and response competition: the effect of grouping factors. Perception and Psychophysics 1992;51:145 – 62.
    Google ScholarLocate open access versionFindings
  • Beauchamp MS, Cox RW, DeYoe EA. Graded effects of spatial and featural attention on human area MT and associated motion processing areas. Journal of Neurophysiology 1997;78:516 –20.
    Google ScholarLocate open access versionFindings
  • Belin P, Zatorre RJ, Philippe L, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature 2000;403:309 – 12.
    Google ScholarLocate open access versionFindings
  • Bentin S, Allison T, Puce A, Perez E, McCarthy G. Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience 1996;8:551 – 65.
    Google ScholarLocate open access versionFindings
  • Blaser E, Pylyshyn Z, Holcombe A. Tracking an object through feature-space. Nature 2000;408:196 – 9.
    Google ScholarLocate open access versionFindings
  • Braun J. Intimate attention. Nature 2000;408:154 – 5.
    Google ScholarLocate open access versionFindings
  • Brefczynski JA, DeYoe EA. A physiological correlate of the ‘spotlight’ of visual attention. Nature Neuroscience 1999;4:370 – 4.
    Google ScholarLocate open access versionFindings
  • Broadbent D. Perception and Communication. London: Pergamon Press, 1958.
    Google ScholarFindings
  • Connor CE, Gallant JL, Preddie DC, Van Essen DC. Responses in area V4 depend on the spatial relationship between stimulus and attention. Journal of Neurophysiology 1996;75:1306 – 8.
    Google ScholarLocate open access versionFindings
  • Connor CE, Preddie DC, Gallant JL, Van Essen DC. Spatial attention effects in macaque area V4. Journal of Neuroscience 1997;17:3201 – 14.
    Google ScholarLocate open access versionFindings
  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, et al. Attentional modulation of neural processing of shape, color, and velocity in humans. Science 1990;248:1556 – 9.
    Google ScholarLocate open access versionFindings
  • Corbetta M, Miezin FM, Shulman GL, Petersen SE. A PET study of visuospatial attention. Journal of Neuroscience 1993;13:1202 – 26.
    Google ScholarLocate open access versionFindings
  • Corbetta M, Shulman GL, Miezin FM, Petersen SE. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 1995;270:802 – 5.
    Google ScholarLocate open access versionFindings
  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL. A common network of functional areas for attention and eye movements. Neuron 1998;21:761 – 73.
    Google ScholarLocate open access versionFindings
  • Coull JT, Frith CD. Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention. Neuroimage 1998;8:176 – 87.
    Google ScholarLocate open access versionFindings
  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 2000;26:55 – 67.
    Google ScholarLocate open access versionFindings
  • Davis G, Driver J, Pavani F, Shepard A. Reappraising the apparent costs of attending to two separate visual objects. Vision Research 2000;40:1323 – 32.
    Google ScholarLocate open access versionFindings
  • Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annual Review of Neuroscience 1995;18:193 –222.
    Google ScholarLocate open access versionFindings
  • Downing P, Kanwisher N. fMRI evidence for location-based attentional selection. Talk presented at the Annual Meeting of the Society for Neuroscience. New Orleans, LA, 2000.
    Google ScholarFindings
  • Driver J, Baylis GC. Movement and visual attention: the spotlight metaphor breaks down. Journal of Experimental Psychology: Human Perception and Performance 1989;15:448 –56.
    Google ScholarLocate open access versionFindings
  • Duncan J. Selective attention and the organization of visual information. Journal of Experiment Psychology: General 1984;113:501 – 17.
    Google ScholarLocate open access versionFindings
  • Egly R, Driver J, Rafal RD. Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General 1994;123:161 – 77.
    Google ScholarLocate open access versionFindings
  • Eimer M. ‘Sensory gating’ as a mechanism for visuospatial orienting: electrophysiological evidence from trial-by-trial cuing experiments. Perception and Psychophysics 1994;55:667 –75.
    Google ScholarLocate open access versionFindings
  • Eimer M. Attentional modulations of event-related brain potentials sensitive to faces. Cognitive Neuropsychology 2000;17:103 – 16.
    Google ScholarLocate open access versionFindings
  • Eimer M. Crossmodal links in spatial attention between vision, audition, and touch: evidence from event-related brain potentials. Neuropsychologia 2001;39:1292 –1303.
    Google ScholarLocate open access versionFindings
  • Epstein R, Kanwisher N. A cortical representation of the local visual environment. Nature 1998;392:598 –601.
    Google ScholarLocate open access versionFindings
  • Epstein R, Stanley D, Harris A, Kanwisher N. The parahippocampal place area: perception, encoding, or memory retrieval? Neuron 1999;23:115 –25.
    Google ScholarLocate open access versionFindings
  • Eriksen CW, St. James JD. Visual attention within and around the field of focal attention: a zoom lens model. Perception and Psychophysics 1986;40:225 –40.
    Google ScholarLocate open access versionFindings
  • Farah MJ, Wilson KD, Drain HM, Tanaka JR. The inverted face inversion effect in prosopagnosia: evidence for mandatory, face-specific perceptual mechanisms. Vision Research 1995;35:2089 – 93.
    Google ScholarLocate open access versionFindings
  • Gandhi SP, Heeger DJ, Boynton GM. Spatial attention affects brain activity in human primary visual cortex. Proceedings of the National Academy of Sciences USA 1999;96:3314 –9.
    Google ScholarLocate open access versionFindings
  • Halgren E, Raij T, Marinkovic K, Jousmaki V, Hari R. Cognitive response profile of the human fusiform face area as determined by MEG. Cerebral Cortex 2000;10:69 –81.
    Google ScholarLocate open access versionFindings
  • Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in the human brain. Science 1973;182:177 – 80.
    Google ScholarLocate open access versionFindings
  • Hillyard SA, Mangun GR, Woldorff MG, Luck SJ. Neural systems mediating selective attention. In: Gazzaniga MS, editor. The Cognitive Neurosciences. Cambridge, MA: MIT Press, 1995:665 – 82.
    Google ScholarLocate open access versionFindings
  • Hoffman JE, Nelson B. Spatial selectivity in visual search. Perception and Psychophysics 1981;30:283 –90.
    Google ScholarLocate open access versionFindings
  • Hopfinger B, Woldorff MG, Fletcher EM, Mangun GR. Dissociating top-down attentional control from selective perception and action. Neuropsychologica 2001;39:1277 –1291.
    Google ScholarLocate open access versionFindings
  • Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV. Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences USA 1999;96:9379 – 84.
    Google ScholarLocate open access versionFindings
  • Jeffreys DA. Evoked potential studies of face and object processing. Visual Cognition 1996;3:1 –38.
    Google ScholarLocate open access versionFindings
  • Kahneman D, Treisman A, Gibbs BJ. The reviewing of object files: object-specific integration of information. Cognitive Psychology 1992;24:175 – 219.
    Google ScholarLocate open access versionFindings
  • Kanwisher N, Driver J. Objects, attributes, and visual attention. Current Directions in Psychological Science 1992;1:26 – 31.
    Google ScholarLocate open access versionFindings
  • Kanwisher N, McDermott J, Chun M. The fusiform face area: a module in human extrastriate cortex specialized for perception of faces. Journal of Neuroscience 1997;17:4302 – 11.
    Google ScholarLocate open access versionFindings
  • Kanwisher N. Domain specificity in face perception. Nature Neuroscience 2000;3:759 – 63.
    Google ScholarLocate open access versionFindings
  • Kanwisher N, Wojciulik E. Visual attention: insights from brain imaging. Nature Reviews: Neuroscience 2000;1:91 – 100.
    Google ScholarLocate open access versionFindings
  • Kanwisher N, Downing P, Epstein R, Kourtzi Z. Functional neuroimaging of human visual recognition. In: Cabeza R, Kingstone A, editors. Handbook of Functional Neuroimaging of Cognition. Cambridge, MA: MIT Press, 2001.
    Google ScholarLocate open access versionFindings
  • Kastner S, Pinsk MA, DeWeerd P, Desimone R, Ungerleider LG. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 1999;22:751 – 61.
    Google ScholarLocate open access versionFindings
  • Kastner S, Ungerleider LG. The neural basis of biased competition in human visual cortex. Neuropsychologia 2001;39:1263 – 1276.
    Google ScholarLocate open access versionFindings
  • LaBerge D, Brown V. Variations in size of the visual field in which targets are presented: an attentional range effect. Perception and Psychophysics 1986;40:188 – 200.
    Google ScholarLocate open access versionFindings
  • Lamme VF, Roelfsma PR. The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neuroscience 2000;23:571 – 9.
    Google ScholarLocate open access versionFindings
  • Liu J, Higuchi M, Marantz A, Kanwisher N. Magnetophysiological studies of face and non-face processing. Neuroreport 2000;11:337 – 41.
    Google ScholarLocate open access versionFindings
  • Liu J, Kanwisher N. Covert visual attention modulates face-specific activity at 160 msec: An MEG study. Poster presented at the annual meeting of the Society for Cognitive Neuroscience. San Francisco, 2000.
    Google ScholarFindings
  • Luck SJ, Chelazzi L, Hillyard SA, Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology 1997;77:24 – 42.
    Google ScholarLocate open access versionFindings
  • Luck SJ, Woodman GF, Vogel EK. Event-related potential studies of attention. Trends in Cognitive Science 2000;4:432 –40.
    Google ScholarLocate open access versionFindings
  • Mack A, Rock I. Inattentional Blindness. Cambridge, MA: MIT Press, 1998.
    Google ScholarFindings
  • Marois R, Leung HC, Gore JC. A stimulus-driven approach to object identity and location processing in the human brain. Neuron 2000;25:717 – 28.
    Google ScholarLocate open access versionFindings
  • Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience 1999;2:364 – 9.
    Google ScholarLocate open access versionFindings
  • McCarthy G, Puce A, Gore JC, Allison T. Face-specific processing in the human fusiform gyrus. Journal of Cognitive Neuroscience 1997;9:604 – 9.
    Google ScholarLocate open access versionFindings
  • McCarthy G, Puce A, Belger A, Allison T. Electrophysiologcial studies of human face perception II: Response properties of face-specific potentials generated in occipitotemporal cortex. Cerebral Cortex 1999;9:431 – 44.
    Google ScholarLocate open access versionFindings
  • Moran J, Desimone R. Selective attention gates visual processing in the extra-striate cortex. Science 1985;229:782 – 4.
    Google ScholarLocate open access versionFindings
  • Motter BC. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology 1993;70:909 –19.
    Google ScholarLocate open access versionFindings
  • Nobre AC, Sebestyn GN, Gitelman DR, Mesulam M-M, Frackowiak RS, Frith CD. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 1997;120:515 – 33.
    Google ScholarLocate open access versionFindings
  • Nobre AC, Gitelman DR, Dias EC, Mesulam MM. Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage 2000;11:210 – 6.
    Google ScholarLocate open access versionFindings
  • Nobre AC. Orienting attention to instants in time. Neuropsychologia 2001;39:1317 – 1328.
    Google ScholarLocate open access versionFindings
  • O’Craven KM, Rosen BR, Kwong KK, Treisman A, Savoy RL. Voluntary attention modulates fMRI activity in human MTMST. Neuron 1997;18:591 –8.
    Google ScholarLocate open access versionFindings
  • O’Craven K, Downing P, Kanwisher N. fMRI evidence for objects as the units of attentional selection. Nature 1999;401:584 – 7.
    Google ScholarLocate open access versionFindings
  • Pashler HE. The Psychology of Attention. Cambridge, MA: MIT Press, 1998.
    Google ScholarFindings
  • Posner MI. Orienting of attention. Quarterly Journal of Experimental Psychology 1980;32:3 –25.
    Google ScholarLocate open access versionFindings
  • Posner MI, Snyder CRR, Davidson BJ. Attention and the detection of signals. Journal of Experimental Psychology: General 1980;109:160 – 74.
    Google ScholarLocate open access versionFindings
  • Posner MI, Dehaene S. Attentional networks. Trends in Neuroscience 1994;17:75 – 9.
    Google ScholarLocate open access versionFindings
  • Price C, Friston J. Cognitive conjunction: a new approach to brain activation experiments. NeuroImage 1997;5:261 – 70.
    Google ScholarLocate open access versionFindings
  • Puce A, Allison T, McCarthy G. Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cerebral Cortex 1999;9:445 – 58.
    Google ScholarLocate open access versionFindings
  • Rees G, Russell C, Frith CD, Driver J. Inattentional blindness versus inattentional amnesia for fixated but ignored words. Science 1999;286:2504 – 7.
    Google ScholarLocate open access versionFindings
  • Rees G, Lavie N. What can functional imaging reveal about the role of attention in visual awareness? Neuropsychologia 2001;39:1343 – 1353.
    Google ScholarLocate open access versionFindings
  • Ress D, Backus B, Heeger D. Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience 2000;3:940 – 5.
    Google ScholarLocate open access versionFindings
  • Shapiro KL, Arnell KM, Raymond JE. The attentional blink. Trends in Cognitive Sciences 1997;1:291 – 6.
    Google ScholarLocate open access versionFindings
  • Somers DC, Dale AM, Seiffert AE, Tootell RB. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proceedings of the National Academy of Sciences USA 1999;96:1663 – 8.
    Google ScholarLocate open access versionFindings
  • Tarr MJ, Gauthier I. FFA: A flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature Neuroscience 2000;3:764 – 9.
    Google ScholarLocate open access versionFindings
  • Treisman A, Gelade G. A feature-integration theory of attention. Cognitive Psychology 1980;12:97 – 136.
    Google ScholarLocate open access versionFindings
  • Treisman A. The perception of features and objects. In: Baddeley A, Weiskrantz L, editors. Attention: Selection, Awareness, and Control. Oxford: Clarendon Press, 1993.
    Google ScholarLocate open access versionFindings
  • Treisman A. The binding problem. Current Opinion in Neurobiology 1996;6:171 – 8.
    Google ScholarLocate open access versionFindings
  • Treue S, Martinez Trujillo JC. Feature-based attention influences motion procesing gain in macaque visual cortex. Nature 1999;399:575 – 9.
    Google ScholarLocate open access versionFindings
  • Tsal Y, Lamy D. Attending to an object’s color entails attending to its location: support for location-special views of visual attention. Perception and Psychophysics 2000;62:960 – 8.
    Google ScholarLocate open access versionFindings
  • Vuilleumier P. Faces call for attention: evidence from patients with visual extinction. Neuropsychologia 2000;38:693 – 700.
    Google ScholarLocate open access versionFindings
  • Vuilleumier P, Schwartz S. Emotional facial expressions capture attention. Neurology 2001;56:153 – 8.
    Google ScholarLocate open access versionFindings
  • Watson SE, Kramer AF. Object-based visual selective attention and perceptual organization. Perception and Psychophysics 1999;61:31 – 49.
    Google ScholarLocate open access versionFindings
  • Wojciulik E, Kanwisher N, Driver J. Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. Journal of Neurophysiology 1998;79:1574 – 8.
    Google ScholarLocate open access versionFindings
  • Wojciulik E, Kanwisher N. The generality of parietal involvement in visual attention. Neuron 1999;23:747 – 64.
    Google ScholarLocate open access versionFindings
0
Your rating :

No Ratings

Tags
Comments
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn