In vitro and in vivo reconstitution and stability of vertebrate chromosome ends.

NUCLEIC ACIDS RESEARCH(1998)

引用 14|浏览6
暂无评分
摘要
Telomeres are essential repetitive sequences at the ends of chromosomes that prevent chromosome fusiorn and degradation. We have successfully recapitulated these two protective functions in vivo and in vitro by incubating blunt-end DNA constructs having vertebrate telomeric ends in Xenopus eggs and egg extracts. Constructs with telomeric ends are stable as linear molecules; constructs with non-telomeric ends undergo intramolecular fusion. In extracts, 99.8% of the telomeric constructs from 78 to 700 bp in length are assembled into 'model telomeres' in <5 min and have an extpapolated half-life of >3.5 years. Non-telomeric constructs circularize with first order kinetics and a half-life of 4 h. In living eggs the telomeric constructs are protected from fusion and degradation. The stability of the telomeric constructs is not due to covalent processing, Extract can protect similar to 100 pM telomeric ends (equivalent to 1.7 x 10(7) ends/egg) even in the presence of a 20-fold excess of double-stranded telomeric DNA, suggesting that protection requires end-specific factors. Constructs with (TTGGGG)(n) repeats are unstable, suggesting that short tracts of this and other telomere-like sequences found within human telomeres could lead to genome instability if exposed by partial telomere erosion during aging.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要