AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
C–H bond functionalizations were accomplished with b-hydrogen-containing alkyl halides in the presence of palladium, nickel or ruthenium catalysts under basic reaction conditions

Metal-catalyzed direct alkylations of (hetero)arenes via C-H bond cleavages with unactivated alkyl halides.

CHEMICAL COMMUNICATIONS, no. 27 (2010): 4866-4877

被引用308|浏览3
WOS
下载 PDF 全文
引用
微博一下

摘要

Significant progress has been made in direct alkylations of (hetero)arenes with unactivated alkyl halides. Thus, C-H bond functionalizations were accomplished with beta-hydrogen-containing alkyl halides in the presence of palladium, nickel or ruthenium catalysts under basic reaction conditions. A valuable asset of these methodologies is r...更多

代码

数据

0
简介
  • Substitutedarenes are indispensable substructures of molecules with activities of relevance to inter alia pharmaceutical and agrochemical industries or material sciences.[1,2,3,4] Traditionally, the synthesis of alkylatedarenes strongly relies on Friedel–Crafts[5,6,7] reactions or radical alkylations,[8,9] both of which pose significant limitations to the electronic properties of thearomatic substrates.
  • C–H bond functionalizations were accomplished with b-hydrogen-containing alkyl halides in the presence of palladium, nickel or ruthenium catalysts under basic reaction conditions.
重点内容
  • Substitutedarenes are indispensable substructures of molecules with activities of relevance to inter alia pharmaceutical and agrochemical industries or material sciences.[1,2,3,4] Traditionally, the synthesis of alkylatedarenes strongly relies on Friedel–Crafts[5,6,7] reactions or radical alkylations,[8,9] both of which pose significant limitations to the electronic properties of thearomatic substrates
  • C–H bond functionalizations were accomplished with b-hydrogen-containing alkyl halides in the presence of palladium, nickel or ruthenium catalysts under basic reaction conditions
  • Intermolecular palladium-catalyzed direct alkylations under basic reaction conditions were not restricted to the use of arenes as substrates, but proved to be applicable to direct functionalizations of heteroarenes as well
  • In contrary to Friedel–Crafts electrophilic alkylations, these transition metal-catalyzed processes are characterized by excellent regio- and chemoselectivities, providing access to mono-n-alkylated products, without the interference of cationic rearrangements
  • An additional asset of this approach is represented by exceedingly mild reaction conditions, which avoid protection/deprotection strategies
结果
  • Sequential[28] palladium-catalyzed syntheses of alkylated arenes from ortho-substituted[41] iodoarenes 18 were accomplished through the addition of norbornene (19) by Catellani,[42,43,44,45] and more recently Lautens.[46,47,48,49] Early studies on Mizoroki– Heck-terminated reaction sequences by Catellani and co-workers proved that the use of KOAc, in combination with K2CO3, was beneficial for the preparation of unsymmetricallysubstituted arenes 20 (Scheme 11).[50,51] Here, an excess of the alkyl iodide was found mandatory for achieving high-yielding transformations, and the chemoselectivity of this process strongly depended on the nature of the electrophilic substrate.
  • Benzyl iodides or bromides could be employed, provided that K2CO3 was used as base, along with cocatalytic amounts of pivalic acid, a feature previously noted to be beneficial for palladium-catalyzed direct arylations.[58] The removal of the auxiliary directing group could be accomplished through acid catalysis, providing the dialkylated benzoic acids in high yields.[57] Interestingly, these alkylations were not restricted to C(sp2)–H bond functionalizations, but could be applied to unactivated C(sp3)–H bonds as well.
  • Intermolecular palladium-catalyzed direct alkylations under basic reaction conditions were not restricted to the use of arenes as substrates, but proved to be applicable to direct functionalizations of heteroarenes as well.
  • With this mechanistic insight at hand, the authors set out to explore unprecedented ruthenium-catalyzed direct alkylations with unactivated alkyl halides bearing b-hydrogens.[102] Notably, carboxylic acids or carboxylates turned out to be optimal additives for these challenging transformations, and they outperformed otherligands[103,104] previously employed in ruthenium-catalyzed C–H bond functionalizations (Scheme 26).[102] While inexpensive acids, such as acetic acid 39, could be used as additives, more efficient catalysis proceeded with the acid (1-Ad)CO2H (40).
  • The optimized catalytic system proved to be broadly applicable, thereby allowing for regioselective direct alkylations with differently substituted, unactivated alkyl halides.[102] Primary alkyl iodides, bromides and chlorides served as viable substrates, with alkyl bromides providing superior yields (Scheme 29).
  • With respect to the scope of ruthenium-catalyzed direct alkylations, it is noteworthy that the unprecedented use of neopentyl halides in transition metal-catalyzed arene functionalizations was viable (Scheme 39).[102] Thereby, regioselectively neopentylated products could be obtained through C–H bond cleavage reactions, importantly without the formation of byproducts stemming from undesired cationic rearrangements.
结论
  • The excellent reactivity and selectivity of ruthenium catalysts in C–H bond functionalizations resulted in the successful use of challenging secondary alkyl halides in intermolecular direct alkylations under basic reaction conditions (Scheme 40).[102]
  • Considering the significant recent progress in metalcatalyzed direct alkylations through C–H bond cleavages, including first applications to secondary alkyl halides, further exciting developments are expected in this rapidly evolving research area
总结
  • Substitutedarenes are indispensable substructures of molecules with activities of relevance to inter alia pharmaceutical and agrochemical industries or material sciences.[1,2,3,4] Traditionally, the synthesis of alkylatedarenes strongly relies on Friedel–Crafts[5,6,7] reactions or radical alkylations,[8,9] both of which pose significant limitations to the electronic properties of thearomatic substrates.
  • C–H bond functionalizations were accomplished with b-hydrogen-containing alkyl halides in the presence of palladium, nickel or ruthenium catalysts under basic reaction conditions.
  • Sequential[28] palladium-catalyzed syntheses of alkylated arenes from ortho-substituted[41] iodoarenes 18 were accomplished through the addition of norbornene (19) by Catellani,[42,43,44,45] and more recently Lautens.[46,47,48,49] Early studies on Mizoroki– Heck-terminated reaction sequences by Catellani and co-workers proved that the use of KOAc, in combination with K2CO3, was beneficial for the preparation of unsymmetricallysubstituted arenes 20 (Scheme 11).[50,51] Here, an excess of the alkyl iodide was found mandatory for achieving high-yielding transformations, and the chemoselectivity of this process strongly depended on the nature of the electrophilic substrate.
  • Benzyl iodides or bromides could be employed, provided that K2CO3 was used as base, along with cocatalytic amounts of pivalic acid, a feature previously noted to be beneficial for palladium-catalyzed direct arylations.[58] The removal of the auxiliary directing group could be accomplished through acid catalysis, providing the dialkylated benzoic acids in high yields.[57] Interestingly, these alkylations were not restricted to C(sp2)–H bond functionalizations, but could be applied to unactivated C(sp3)–H bonds as well.
  • Intermolecular palladium-catalyzed direct alkylations under basic reaction conditions were not restricted to the use of arenes as substrates, but proved to be applicable to direct functionalizations of heteroarenes as well.
  • With this mechanistic insight at hand, the authors set out to explore unprecedented ruthenium-catalyzed direct alkylations with unactivated alkyl halides bearing b-hydrogens.[102] Notably, carboxylic acids or carboxylates turned out to be optimal additives for these challenging transformations, and they outperformed otherligands[103,104] previously employed in ruthenium-catalyzed C–H bond functionalizations (Scheme 26).[102] While inexpensive acids, such as acetic acid 39, could be used as additives, more efficient catalysis proceeded with the acid (1-Ad)CO2H (40).
  • The optimized catalytic system proved to be broadly applicable, thereby allowing for regioselective direct alkylations with differently substituted, unactivated alkyl halides.[102] Primary alkyl iodides, bromides and chlorides served as viable substrates, with alkyl bromides providing superior yields (Scheme 29).
  • With respect to the scope of ruthenium-catalyzed direct alkylations, it is noteworthy that the unprecedented use of neopentyl halides in transition metal-catalyzed arene functionalizations was viable (Scheme 39).[102] Thereby, regioselectively neopentylated products could be obtained through C–H bond cleavage reactions, importantly without the formation of byproducts stemming from undesired cationic rearrangements.
  • The excellent reactivity and selectivity of ruthenium catalysts in C–H bond functionalizations resulted in the successful use of challenging secondary alkyl halides in intermolecular direct alkylations under basic reaction conditions (Scheme 40).[102]
  • Considering the significant recent progress in metalcatalyzed direct alkylations through C–H bond cleavages, including first applications to secondary alkyl halides, further exciting developments are expected in this rapidly evolving research area
基金
  • The cited studies from our laboratories were partly funded by the DFG and the Fonds der Chemischen Industrie. Scheme 38 Proposed mechanism for ruthenium-catalyzed direct alkylations with unactivated alkyl halides
引用论文
  • 1 Modern Arylation Methods, ed. L. Ackermann,Wiley-VCH, Weinheim, 2009.
    Google ScholarFindings
  • 2 J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and M. Lemaire, Chem. Rev., 2002, 102, 1359–1470.
    Google ScholarLocate open access versionFindings
  • 3 S. Schroter, C. Stock and T. Bach, Tetrahedron, 2005, 61, 2245–2267.
    Google ScholarFindings
  • 4 J.-R. Wang and K. Manabe, Synthesis, 2009, 1405–1427.
    Google ScholarFindings
  • 5 R. M. Roberts and A. A. Khalaf, Friedel–Crafts Alkylation Chemistry. A Century of Discovery, Marcel Dekker, New York, 1984.
    Google ScholarFindings
  • 6 For selected recent reviews, see: (a) M. Bandini and M. Tragni, Org. Biomol. Chem., 2009, 7, 1501–1507; (b) M. Bandini and A. Umani-Ronchi, Catalytic Asymmetric Friedel–Crafts Alkylations, Wiley-VCH, Weinheim, 2009; (c) M. Bandini, A. Melloni and A. Umani-Ronchi, Angew. Chem., Int. Ed., 2004, 43, 550–556.
    Google ScholarLocate open access versionFindings
  • 7 For ruthenium-catalyzed benzylations through electrophilic aromatic substitution reactions at 200 1C with low regioselectivities, see: (a) T. Kondo, S. Kajiya, S. Tantayanon and Y. Watanabe, J. Organomet. Chem., 1995, 489, 83–91; (b) T. Kondo, S. Tantayanon, Y. Tsuji and Y. Watanabe, Tetrahedron Lett., 1989, 30, 4137–4140.
    Google ScholarLocate open access versionFindings
  • 8 F. Minisci, E. Vismara and F. Fontana, Heterocycles, 1989, 28, 489–519.
    Google ScholarFindings
  • 9 J. S. Carey, D. Laffan, C. Thomson and M. T. Williams, Org. Biomol. Chem., 2006, 4, 2337–2347.
    Google ScholarLocate open access versionFindings
  • 10 Representative recent examples of conventional electrophilic benzylations: (a) A. Prades, R. Corberan, M. Poyatos and E. Peris, Chem.–Eur. J., 2009, 15, 4610–4613; (b) D. Stadler and T. Bach, Angew. Chem., Int. Ed., 2008, 47, 7557–7559; (c) B.-Q. Wang, S.-K. Xiang, Z.-P. Sun, B.-T. Guan, P. Hu, K.-Q. Zhao and Z.-J. Shi, Tetrahedron Lett., 2008, 49, 4310–4312; (d) S. Podder, J. Choudhury and S. Roy, J. Org. Chem., 2007, 72, 3129–3132; (e) M. Rueping, B. J. Nachtsheim and W. Ieawsuwan, Adv. Synth. Catal., 2006, 348, 1033–1037; (f) D. Stadler, F. Muhlthau, P. Rubenbauer, E. Herdtweck and T. Bach, Synlett, 2006, 2573–2576; (g) J. Liu, E. Muth, U. Florke, G. Henkel, K. Merz, J. Sauvageau, E. Schwake and G. Dyker, Adv. Synth. Catal., 2006, 348, 456–462; (h) K. Mertins, I. Iovel, J. Kischel, A. Zapf and M. Beller, Adv. Synth. Catal., 2006, 348, 691–695; (i) F. Muhlthau, D. Stadler, A. Goeppert, G. A. Olah, G. K. S. Prakash and T. Bach, J. Am. Chem. Soc., 2006, 128, 9668–9675; (j) J. Choudhury, S. Podder and S. Roy, J. Am. Chem. Soc., 2005, 127, 6162–6163; (k) I. Iovel, K. Mertins, J. Kischel, A. Zapf and M. Beller, Angew. Chem., Int. Ed., 2005, 44, 3913–3917; (l) K. Mertins, I. Iovel, J. Kischel, A. Zapf and M. Beller, Angew. Chem., Int. Ed., 2005, 44, 238–242; and references cited therein.
    Google ScholarLocate open access versionFindings
  • 11 H. Mayr, B. Kempf and A. R. Ofial, Acc. Chem. Res., 2003, 36, 66–77.
    Google ScholarLocate open access versionFindings
  • 12 H. Mayr and M. Patz, Angew. Chem., Int. Ed. Engl., 1994, 33, 938–957.
    Google ScholarLocate open access versionFindings
  • 13 M. B. Smith and J. March, March’s Advanced Organic Chemistry, John Wiley & Sons, Inc., Hoboken, 2007.
    Google ScholarFindings
  • 14 R. Chinchilla, C. Najera and M. Yus, Chem. Rev., 2004, 104, 2667–2722.
    Google ScholarLocate open access versionFindings
  • 15 For recent examples of exploiting this approach to prepare biarylmethane derivatives, see: (a) N. L’Hermite, A. Giraud, O. Provot, J.-F. Peyrat, M. Alami and J.-D. Brion, Tetrahedron, 2006, 62, 11994–12002; (b) Y.-Q. Long, X.-H. Jiang, R. Dayam, T. Sanchez, R. Shoemaker, S. Sei and N. Neamati, J. Med. Chem., 2004, 47, 2561–2573; and references cited therein.
    Google ScholarLocate open access versionFindings
  • 16 Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and F. Diederich, Wiley-VCH, Weinheim, 2004.
    Google ScholarFindings
  • 17 For select reviews, see: (a) A. Rudolph and M. Lautens, Angew. Chem., Int. Ed., 2009, 48, 2656–2670; (b) M. Nakamura and S. Ito, in Modern Arylation Methods, ed. L. Ackermann, Wiley-VCH, Weinheim, 2009, pp. 155–181; (c) J. Terao and N. Kambe, Acc. Chem. Res., 2008, 41, 1545–1554; (d) A. C. Frisch and M. Beller, Angew. Chem., Int. Ed., 2005, 44, 674–688; (e) M. R. Netherton and G. C. Fu, Adv. Synth. Catal., 2004, 346, 1525–1532; (f) D. J. Cardenas, Angew. Chem., Int. Ed., 2003, 42, 384–387.
    Google ScholarFindings
  • 18 For early examples of conventional cross-couplings with unactivated alkyl halides, see: (a) T. Ishiyama, S. Abe, N. Miyaura and A. Suzuki, Chem. Lett., 1992, 691–694; (b) A. Devasagayaraj, T. Stuedemann and P. Knochel, Angew. Chem., Int. Ed. Engl., 1996, 34, 2723–2725.
    Google ScholarLocate open access versionFindings
  • 19 A. S. Dudnik and V. Gevorgyan, Angew. Chem., Int. Ed., 2010, 49, 2096–2098.
    Google ScholarLocate open access versionFindings
  • 20 Select recent reviews: (a) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem. Commun., 2010, 46, 677–685; (b) L. Ackermann, R. Vicente and A. R. Kapdi, Angew. Chem., Int. Ed., 2009, 48, 9792–9826; (c) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2009, 48, 5094–5115; (d) F. Kakiuchi and T. Kochi, Synthesis, 2008, 3013–3039; (e) B.-J. Li, S.-D. Yang and Z.-J. Shi, Synlett, 2008, 949–957; (f) J. C. Lewis, R. G. Bergman and J. A. Ellman, Acc. Chem. Res., 2008, 41, 1013–1025; (g) T. Satoh and M. Miura, Chem. Lett., 2007, 200–205; (h) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007, 107, 174–238; (i) I. V. Seregin and V. Gevorgyan, Chem. Soc. Rev., 2007, 36, 1173–1193; (j) S. Pascual, P. de Mendoza and A. M. Echavarren, Org. Biomol. Chem., 2007, 5, 2727–2734; (k) L.-C. Campeau, D. R. Stuart and K. Fagnou, Aldrichimica Acta, 2007, 40, 35–41; (l) L. Ackermann, Synlett, 2007, 507–526.
    Google ScholarLocate open access versionFindings
  • 21 L. Ackermann, S. Barfußer and J. Pospech, Org. Lett., 2010, 12, 724–726.
    Google ScholarLocate open access versionFindings
  • 22 L. Ackermann, A. Althammer and R. Born, Angew. Chem., Int. Ed., 2006, 45, 2619–2622.
    Google ScholarLocate open access versionFindings
  • 23 L. Ackermann, A. Althammer and S. Fenner, Angew. Chem., Int. Ed., 2009, 48, 201–204.
    Google ScholarLocate open access versionFindings
  • 24 For a representative example of palladium-catalyzed intermolecular direct alkylations with stoichiometric amounts of organometallic reagents, see: X. Chen, J.-J. Li, X.-S. Hao, C. E. Goodhue and J.-Q. Yu, J. Am. Chem. Soc., 2006, 128, 78–79.
    Google ScholarLocate open access versionFindings
  • 25 For selected recent examples of traditional cross-coupling reactions with benzylic electrophiles, see: (a) R. B. Bedford, M. Huwe and M. C. Wilkinson, Chem. Commun., 2009, 600–602; (b) Y.-H. Chen, M. Sun and P. Knochel, Angew. Chem., Int. Ed., 2009, 48, 2236–2239; (c) L. S. Chupak, J. P. Wolkowski and Y. A. Chantigny, J. Org. Chem., 2009, 74, 1388–1390; (d) M. A. Schade, A. Metzger, S. Hug and P. Knochel, Chem. Commun., 2008, 3046–3048; (e) M. J. Burns, I. J. S. Fairlamb, A. R. Kapdi, P. Sehnal and R. J. K. Taylor, Org. Lett., 2007, 9, 5397–5400; (f) C. C. Kofink and P. Knochel, Org. Lett., 2006, 8, 4121–4124; (g) G. A. Molander and M. D. Elia, J. Org. Chem., 2006, 71, 9198–9202; (h) M. McLaughlin, Org. Lett., 2005, 7, 4875–4878; and references cited therein.
    Google ScholarLocate open access versionFindings
  • 26 B. Liegault, J.-L. Renaud and C. Bruneau, Chem. Soc. Rev., 2008, 37, 290–299.
    Google ScholarLocate open access versionFindings
  • 27 R. Kuwano, Synthesis, 2009, 1049–1061.
    Google ScholarFindings
  • 28 L. F. Tietze, G. Brasche and K. M. Gericke, Domino Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2006.
    Google ScholarFindings
  • 29 Z. Z. Song and H. N. C. Wong, J. Org. Chem., 1994, 59, 33–41.
    Google ScholarLocate open access versionFindings
  • 30 E. Hennessy and S. L. Buchwald, J. Am. Chem. Soc., 2003, 125, 12084–12085.
    Google ScholarLocate open access versionFindings
  • 31 S. J. Hwang, S. H. Cho and S. Chang, J. Am. Chem. Soc., 2008, 130, 16158–16159.
    Google ScholarLocate open access versionFindings
  • 32 For previous examples proposing cooperative metalations, see for instance: (a) A. D. Ryabov, Chem. Rev., 1990, 90, 403–424; (b) D. L. Davies, S. M. A. Donald and S. A. Macgregor, J. Am. Chem. Soc., 2005, 127, 13754–13755; (c) D. GarciaCuadrado, A. A. C. Braga, F. Maseras and A. M. Echavarren, J. Am. Chem. Soc., 2006, 128, 1066–1067; (d) M. Lafrance and K. Fagnou, J. Am. Chem. Soc., 2006, 128, 16496–16497; (e) Y. Feng, M. Lail, N. A. Foley, T. B. Gunnoe, K. A. Barakat, T. R. Cundari and J. L. Petersen, J. Am. Chem. Soc., 2006, 128, 7982–7994; (f) W. J. Tenn, III, K. J. H. Young, J. Oxgaard, R. J. Nielsen, W. A. Goddard, III and R. A. Periana, Organometallics, 2006, 25, 5173–5175; (g) a review: P. de Mendoza and A. M. Echavarren, in Modern Arylation Methods, ed. L. Ackermann, Wiley-VCH, Weinheim, 2009, pp. 363–399.
    Google ScholarLocate open access versionFindings
  • 33 S. J. Hwang, H. J. Kim and S. Chang, Org. Lett., 2009, 11, 4588–4591.
    Google ScholarLocate open access versionFindings
  • 34 S. J. Tremont and H. U. Rahmen, J. Am. Chem. Soc., 1984, 106, 5759–5760.
    Google ScholarLocate open access versionFindings
  • 35 J. S. McCallum, J. R. Gasdaska, L. S. Liebeskind and S. J. Tremont, Tetrahedron Lett., 1989, 30, 4085–4088.
    Google ScholarLocate open access versionFindings
  • 36 For further representative references on the development of C–H bond cleavages that were proposed to proceed through a palladium(II)/palladium(IV) reaction manifold, see: (a) P. K. Byers, A. J. Canty, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1986, 1722–1724; (b) A. L. Canty, M. C. Denney, G. van Koten, B. W. Skelton and A. H. White, Organometallics, 2004, 23, 5432–5439; (c) R. Giri, J. Liang, J.-G. Lei, J.-J. Li, D.-H. Wang, X. Chen, I. C. Naggar, C. Guo, B. M. Foxman and
    Google ScholarLocate open access versionFindings
  • 37 D. Kalyani, N. R. Deprez, L. V. Desai and M. S. Sanford, J. Am. Chem. Soc., 2005, 127, 7330–7331.
    Google ScholarLocate open access versionFindings
  • 38 O. Daugulis and V. G. Zaitsev, Angew. Chem., Int. Ed., 2005, 44, 4046–4048.
    Google ScholarLocate open access versionFindings
  • 39 O. Daugulis, H.-Q. Do and D. Shabashov, Acc. Chem. Res., 2009, 42, 1074–1086.
    Google ScholarLocate open access versionFindings
  • 40 A. R. Dick and M. S. Sanford, Tetrahedron, 2006, 62, 2439–2463.
    Google ScholarFindings
  • 41 A. Rudolph, N. Rackelmann, M.-O. Turcotte-Savard and M. Lautens, J. Org. Chem., 2009, 74, 289–297.
    Google ScholarLocate open access versionFindings
  • 42 M. Catellani, F. Frignani and A. Rangoni, Angew. Chem., Int. Ed. Engl., 1997, 36, 119–122.
    Google ScholarLocate open access versionFindings
  • 43 M. Catellani, E. Motti and N. Della Ca, Acc. Chem. Res., 2008, 41, 1512–1522.
    Google ScholarLocate open access versionFindings
  • 44 M. Catellani, Synlett, 2003, 298–313.
    Google ScholarFindings
  • 45 M. Catellani, Top. Organomet. Chem., 2005, 14, 21–53.
    Google ScholarLocate open access versionFindings
  • 46 M. Lautens and S. Piguel, Angew. Chem., Int. Ed., 2000, 39, 1045–1046.
    Google ScholarLocate open access versionFindings
  • 47 P. Thansandote and M. Lautens, Chem.–Eur. J., 2009, 15, 5874–5883.
    Google ScholarLocate open access versionFindings
  • 48 A. Martins and M. Lautens, Org. Lett., 2008, 10, 5095–5097.
    Google ScholarLocate open access versionFindings
  • 49 C. Bressy, D. Alberico and M. Lautens, J. Am. Chem. Soc., 2005, 127, 13148–13149.
    Google ScholarLocate open access versionFindings
  • 50 M. Catellani and F. Cugini, Tetrahedron, 1999, 55, 6595–6602.
    Google ScholarFindings
  • 51 M. Catellani, E. Motti and M. Minari, Chem. Commun., 2000, 157–158.
    Google ScholarLocate open access versionFindings
  • 52 For an early example of palladium-catalyzed traditional crosscoupling with a secondary benzyl bromide, see: R. Sustmann, J. Lau and M. Zipp, Tetrahedron Lett., 1986, 27, 5207–5210.
    Google ScholarLocate open access versionFindings
  • 53 D. J. Cardenas, B. Martın-Matute and A. M. Echavarren, J. Am. Chem. Soc., 2006, 128, 5033–5040.
    Google ScholarLocate open access versionFindings
  • 54 For an intermolecular example, see: P. Thansandote, M. Raemy, A. Rudolph and M. Lautens, Org. Lett., 2007, 9, 5255–5258.
    Google ScholarLocate open access versionFindings
  • 55 A. Rudolph, N. Rackelmann and M. Lautens, Angew. Chem., Int. Ed., 2007, 46, 1485–1488.
    Google ScholarLocate open access versionFindings
  • 56 Y.-H. Zhang, B.-F. Shi and J.-Q. Yu, Angew. Chem., Int. Ed., 2009, 48, 6097–6100.
    Google ScholarLocate open access versionFindings
  • 57 D. Shabashov and O. Daugulis, J. Am. Chem. Soc., 2010, 132, 3965–3972.
    Google ScholarLocate open access versionFindings
  • 58 For representative examples of the use of pivalic acid in palladiumcatalyzed direct arylations, see: (a) M. Lafrance, D. Lapointe and K. Fagnou, Tetrahedron, 2008, 64, 6015–6020; (b) L. Ackermann, R. Vicente and R. Born, Adv. Synth. Catal., 2008, 350, 741–748; (c) T. Watanabe, S. Oishi, N. Fujii and H. Ohno, Org. Lett., 2008, 10, 1759–1762; (d) B. Liegault, D. Lapointe, L. Caron, A. Vlassova and K. Fagnou, J. Org. Chem., 2009, 74, 1826–1834; and ref. 32d.
    Google ScholarLocate open access versionFindings
  • 59 D. C. Powers, M. A. L. Geibel, J. E. M. N. Klein and T. Ritter, J. Am. Chem. Soc., 2009, 131, 17050–17051.
    Google ScholarLocate open access versionFindings
  • 60 N. R. Deprez and M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 11234–11241.
    Google ScholarLocate open access versionFindings
  • 61 W. Yue, Y. Li, W. Jiang, Y. Zhen and Z. Wang, Org. Lett., 2009, 11, 5430–5433.
    Google ScholarLocate open access versionFindings
  • 62 For an ortho-selective ruthenium-catalyzed direct functionalization of these arenes, see: S. Nakazono, Y. Imazaki, H. Yoo, J. Yang, T. Sasamori, N. Tokitoh, T. Cedric, H. Kageyama, D. Kim, H. Shinokubo and A. Osuka, Chem.–Eur. J., 2009, 15, 7530–7533.
    Google ScholarLocate open access versionFindings
  • 63 Direct arylations and alkenylations with meta-selectivity were described: (a) R. J. Phipps and M. J. Gaunt, Science, 2009, 323, 1593–1597; (b) Y.-H. Zhang, B.-F. Shi and J.-Q. Yu, J. Am. Chem. Soc., 2009, 131, 5072–5074.
    Google ScholarLocate open access versionFindings
  • 64 C. Verrier, C. Hoarau and F. Marsais, Org. Biomol. Chem., 2009, 7, 647–650.
    Google ScholarLocate open access versionFindings
  • 65 R. Sanchez and F. A. Zhuravlev, J. Am. Chem. Soc., 2007, 129, 5824–5825.
    Google ScholarLocate open access versionFindings
  • 66 D. Lapointe and K. Fagnou, Org. Lett., 2009, 11, 4160–4163.
    Google ScholarLocate open access versionFindings
  • 67 T. Mukai, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2010, 12, 1360–1363.
    Google ScholarLocate open access versionFindings
  • 68 The Mizoroki–Heck Reaction, ed. M. Oestreich, Wiley, Chichester, 2009.
    Google ScholarFindings
  • 69 O. Rene, D. Lapointe and K. Fagnou, Org. Lett., 2009, 11, 4560–4563.
    Google ScholarLocate open access versionFindings
  • 70 For select related intramolecular direct alkylations, see: (a) R. T. Ruck, M. A. Huffman, M. M. Kim, M. Shevlin, W. V. Kandur and I. W. Davies, Angew. Chem., Int. Ed., 2008, 47, 4711–4714; (b) G. Satyanarayana, C. Maichle-Mossmer and M. E. Maier, Chem. Commun., 2009, 1571–1573; (c) Y. Hu, C. Yu, D. Ren, Q. Hu, L. Zhang and D. Cheng, Angew. Chem., Int. Ed., 2009, 48, 5448–5451.
    Google ScholarLocate open access versionFindings
  • 71 O. Vechorkin, V. Proust and X. Hu, Angew. Chem., Int. Ed., 2010, 49, 3061–3064.
    Google ScholarLocate open access versionFindings
  • 72 H.-Q. Do and O. Daugulis, J. Am. Chem. Soc., 2008, 130, 1128–1129.
    Google ScholarLocate open access versionFindings
  • 73 L. Ackermann, H. K. Potukuchi, D. Landsberg and R. Vicente, Org. Lett., 2008, 10, 3081–3084.
    Google ScholarLocate open access versionFindings
  • 74 H.-Q. Do, R. M. Kashif Khan and O. Daugulis, J. Am. Chem. Soc., 2008, 130, 15185–15192.
    Google ScholarLocate open access versionFindings
  • 75 F. Besselievre, S. Piguel, F. Mahuteau-Betzer and D. S. Grierson, Org. Lett., 2008, 10, 4029–4032.
    Google ScholarLocate open access versionFindings
  • 76 S. Yotphan, R. G. Bergman and J. A. Ellman, Org. Lett., 2009, 11, 1511–1514.
    Google ScholarLocate open access versionFindings
  • 77 T. Kawano, N. Matsuyama, K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2010, 75, 1764–1766.
    Google ScholarLocate open access versionFindings
  • 78 J. Canivet, J. Yamaguchi, I. Ban and K. Itami, Org. Lett., 2009, 11, 1733–1736.
    Google ScholarLocate open access versionFindings
  • 79 H. Hachiya, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2009, 11, 1737–1740.
    Google ScholarLocate open access versionFindings
  • 80 N. Matsuyama, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2009, 11, 4156–4159.
    Google ScholarLocate open access versionFindings
  • 81 L. Ackermann and R. Vicente, Top. Curr. Chem., 2010, 292, 211–229.
    Google ScholarLocate open access versionFindings
  • 82 L. Ackermann, R. Born, J. H. Spatz, A. Althammer and C. J. Gschrei, Pure Appl. Chem., 2006, 78, 209–214.
    Google ScholarLocate open access versionFindings
  • 83 For examples of ruthenium-catalyzed direct arylations with boron-based arylating reagents, see: (a) K. Kitazawa, T. Kochi, M. Sato and F. Kakiuchi, Org. Lett., 2009, 11, 1951–1954; (b) D. V. Gribkov, S. J. Pastine, M. Schnurch and D. Sames, J. Am. Chem. Soc., 2007, 129, 11750–11755; (c) F. Kakiuchi, Y. Matsuura, S. Kan and N. Chatani, J. Am. Chem. Soc., 2005, 127, 5936–5945; (d) Y. J. Park, E.-A. Jo and C.-H. Jun, Chem. Commun., 2005, 1185–1187; (e) F. Kakiuchi, S. Kan, K. Igi, N. Chatani and S. Murai, J. Am. Chem. Soc., 2003, 125, 1698–1699. 84 (a) For recently reported ruthenium-catalyzed amino- or alkoxycarbonylations, see: T. Kochi, S. Urano, H. Seki, E. Mizushima, M. Sato and F. Kakiuchi, J. Am. Chem. Soc., 2009, 131, 2792–2793; (b) see also: K. Cheng, B. Yao, J. Zhao and Y. Zhang, Org. Lett., 2008, 10, 5309–5312; (c) S. Oi, Y. Tanaka and Y. Inoue, Organometallics, 2006, 25, 4773–4778.
    Google ScholarLocate open access versionFindings
  • 85 S. Oi, S. Fukita, N. Hirata, N. Watanuki, S. Miyano and Y. Inoue, Org. Lett., 2001, 3, 2579–2581. 86 (a) S. Oi, E. Aizawa, Y. Ogino and Y. Inoue, J. Org. Chem., 2005, 70, 3113–3119; (b) S. Oi, H. Sasamoto, R. Funayama and Y. Inoue, Chem. Lett., 2008, 994–995; (c) S. Oi, R. Funayama, T. Hattori and Y. Inoue, Tetrahedron, 2008, 64, 6051–6059; and references cited therein.
    Google ScholarLocate open access versionFindings
  • 87 L. Ackermann, A. Althammer and R. Born, Tetrahedron, 2008, 64, 6115–6124.
    Google ScholarFindings
  • 88 I. Ozdemir, S. Demir, B. Cetinkaya, C. Gourlaouen, F. Maseras, C. Bruneau and P. H. Dixneuf, J. Am. Chem. Soc., 2008, 130, 1156–1157.
    Google ScholarLocate open access versionFindings
  • 89 L. Ackermann and R. Vicente, Org. Lett., 2009, 11, 4922–4925.
    Google ScholarLocate open access versionFindings
  • 90 A. F. Littke, in Modern Arylation Methods, ed. L. Ackermann, Wiley-VCH, Weinheim, 2009, pp. 25–68.
    Google ScholarFindings
  • 91 A. F. Littke and G. C. Fu, Angew. Chem., Int. Ed., 2002, 41, 4176–4211.
    Google ScholarLocate open access versionFindings
  • 92 R. B. Bedford, C. S. J. Cazin and D. Holder, Coord. Chem. Rev., 2004, 248, 2283–2321.
    Google ScholarLocate open access versionFindings
  • 93 L. Ackermann, Org. Lett., 2005, 7, 3123–3125.
    Google ScholarLocate open access versionFindings
  • 94 L. Ackermann, R. Born and R. Vicente, ChemSusChem, 2009, 2, 546–549.
    Google ScholarFindings
  • 95 L. Ackermann, R. Born and P. Alvarez-Bercedo, Angew. Chem., Int. Ed., 2007, 46, 6364–6367.
    Google ScholarLocate open access versionFindings
  • 96 F. Pozgan and P. H. Dixneuf, Adv. Synth. Catal., 2009, 351, 1737–1743.
    Google ScholarLocate open access versionFindings
  • 97 N. Luo and Z. Yu, Chem.–Eur. J., 2010, 16, 787–791.
    Google ScholarFindings
  • 98 H. Miura, K. Wada, S. Hosokawa and M. Inoue, Chem.–Eur. J., 2010, 16, 4186–4189.
    Google ScholarFindings
  • 99 L. Ackermann and M. Mulzer, Org. Lett., 2008, 10, 5043–5045.
    Google ScholarLocate open access versionFindings
  • 100 For the use of NaOAc in stoichiometric cyclometalations, see: D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton and D. R. Russell, Dalton Trans., 2003, 4132–4138.
    Google ScholarLocate open access versionFindings
  • 101 L. Ackermann, R. Vicente and A. Althammer, Org. Lett., 2008, 10, 2299–2302.
    Google ScholarLocate open access versionFindings
  • 102 L. Ackermann, P. Novak, R. Vicente and N. Hofmann, Angew. Chem., Int. Ed., 2009, 48, 6045–6048.
    Google ScholarLocate open access versionFindings
  • 103 L. Ackermann, Synthesis, 2006, 1557–1571.
    Google ScholarFindings
  • 104 L. Ackermann and A. Althammer, Chem. Unserer Zeit, 2009, 43, 74–83.
    Google ScholarFindings
  • 105 L. Ackermann, A. Althammer and R. Born, Synlett, 2007, 2833–2836.
    Google ScholarFindings
  • 106 F. Kakiuchi and N. Chatani, in Ruthenium in Organic Synthesis, ed. S.-I. Murahashi, Wiley-VCH, Weinheim, 2004, pp. 219–255.
    Google ScholarFindings
  • 107 F. Kakiuchi and N. Chatani, in Ruthenium Catalysts and Fine Chemistry, ed. C. Bruneau and P. H. Dixneuf, Springer-Verlag, Berlin, Heidelberg, 2004, pp. 45–79.
    Google ScholarFindings
  • 108 F. Kakiuchi and N. Chatani, Adv. Synth. Catal., 2003, 345, 1077–1101.
    Google ScholarLocate open access versionFindings
  • 109 F. Kakiuchi and S. Murai, Acc. Chem. Res., 2002, 35, 826–834.
    Google ScholarLocate open access versionFindings
  • 110 S. I. Kozhushkov, D. S. Yufit and L. Ackermann, Org. Lett., 2008, 10, 3409–3412.
    Google ScholarLocate open access versionFindings
  • 111 L. Ackermann and P. Novak, Org. Lett., 2009, 11, 4966–4969.
    Google ScholarLocate open access versionFindings
  • 112 T. G. Gant and A. I. Meyers, Tetrahedron, 1994, 50, 2297–2360.
    Google ScholarFindings
  • 113 K. Shen, Y. Fu, J.-N. Li, L. Liu and Q.-X. Guo, Tetrahedron, 2007, 63, 1568–1576.
    Google ScholarFindings
  • 114 H. Grounds, J. C. Anderson, B. Hayter and A. J. Blake, Organometallics, 2009, 28, 5289–5292. 115 (a) B. M. Trost, Science, 1991, 254, 1471–1477; (b) B. M. Trost, Acc. Chem. Res., 2002, 35, 695–705.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
小科