Seated occupant interactions with seat backrest and pan, and biodynamic responses under vertical vibration

Journal of Sound and Vibration(2006)

引用 48|浏览2
暂无评分
摘要
The relative interactions of the seated occupants with an inclined backrest were investigated in terms of apparent mass (APMS) responses at the two driving-points formed by the buttock–seat pan and the upper body-backrest under exposure to broad-band and road-measured vertical vibration. The measurements were performed using 24 adult subjects seated with full contact with the back support and two different positions of the hands (in lap and on steering wheel), while exposed to three different levels of broad band (0.25, 0.5 and 1.0m/s2rms acceleration) vibration in the 0.5–40Hz frequency range, and a track-measured vibration spectrum (1.07m/s2 rms acceleration). The forces developed on the seat pan and the backrest in directions normal to the supporting surfaces were measured to derive the APMS responses at both the driving-points. The results showed significant interactions of the upper body with the back support in a direction normal to the backrest, even though the vibration is applied along the vertical axis. At low frequencies, the backrest APMS magnitude was smaller than that measured at the seat pan, but it either exceeded or approached that of the seat pan APMS in the vicinity of the primary resonant frequencies. The results also suggested considerable effect of the hands position on the APMS magnitudes measured at both the driving-points. The effects of variations in the excitation type and magnitude, considered in this study, were observed to be small compared to those caused by the hands position and individual body masses. Owing to the strong effects of the body mass on the measured APMS responses at both driving-points, a total of 8 target data sets were identified corresponding to four mass groups (<60, 60.6–70, 70.5–80 and >80kg) and two hands positions for formulating mechanical equivalent models. The model parameters identified for the target functions suggested that the models mass, stiffness and damping parameters increase with increasing body mass. The observed variations in the identified parameters could be applied for predicting the APMS responses reflected on the pan as well as backrest of the human occupants with specific body mass.
更多
查看译文
关键词
spectrum,low frequency,resonant frequency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要