AI帮你理解科学
AI 精读
AI抽取本论文的概要总结
微博一下:
Efficient non-interactive secure computation
EUROCRYPT, (2011): 406-425
EI
关键词
摘要
Suppose that a receiver R wishes to publish an encryption of her secret input x so that every sender S, holding an input y, can reveal f(x, y) to R by sending her a single message. This should be done while simultaneously protecting the secrecy of y against a corrupted R and preventing a corrupted S from having an unfair influence on the ...更多
代码:
数据:
简介
- This work is motivated by the following variant of the problem of computing on encrypted data [42,43].
- Existing constant-round black-box protocols in the OT-hybrid model require Ω(κ) calls to a PRG for each gate in the circuit, where κ is a statistical security parameter guaranteeing at most 2−κ simulation error for a malicious sender2.
重点内容
- This work is motivated by the following variant of the problem of computing on encrypted data [42,43]
- We consider the question of minimizing the asymptotic number of pseudorandom generator calls made by such protocols
- Suppose that a receiver R wishes to publish a semantically secure encryption of her secret input x so that any sender S, holding an input y, can reveal f (x, y) to R by sending her a single message. (The message can be seen as an encryption of f (x, y) that the receiver can decrypt)
- As a concrete motivating scenario for non-interactive secure computation, consider a receiver Roberta who wishes to publish an encrypted version of her personal profile x on her public web page towards finding a suitable partner for dating
- We present the first general non-interactive secure computation/oblivious transfer protocols which only make a black-box use of a pseudorandom generator
- We only considered non-interactive secure computation schemes which rely on an oblivious transfer oracle that gets inputs from both the sender and the receiver
结果
- Start with a perfectly secure NISC/OT protocol π for g in the semi-honest model in which the receiver uses its original α input bits a as the sequence of OT choices.
- O-bit long output and n + O(κ)-bit input from Receiver, such that there is an NISC/HC scheme for FC that makes a black-box use of a PRG, invoking the PRG O(κ|C|) times, and with O total communication.
- For any function f : X × Y → Z that has a polynomial sized circuit C with n input wires for the first input, there exists an NC0 functionality HC with O(κ|C|)-bit long output and n + O(κ)-bit input from Receiver, such that there is an NISC/HC scheme for FC† that makes a black-box use of a PRG, invoking the PRG O(|C|) times, and with O(k|C|) total communication.
- For any function f : X × Y → Z that has a polynomial sized circuit C with n input wires for the first input, there exists an NC0 functionality HC with O(k|C|)-bit long output and n + O(κ)-bit input from Receiver, such that there is an NISC/HC scheme for FC‡ that makes a black-box use of a PRG, invoking the PRG O(|C|) times, and with O(k|C|) total communication.
- The authors will first formalize the encoding notion that the authors use to deal with WDT attacks, the authors present an outline of the general transformation, and show how to invoke this transformation using known semi-honest MPC protocols from the literature to obtain higher levels of efficiency.
结论
- It is still possible to consider such a scheme in an H-hybrid model, if the functionality H itself allows Receiver to send an input, and subsequently have multiple rounds of independent interactions with
- For any function f : X × Y → Z that has a polynomial sized circuit C with n input wires for the first input, there exists an NC0 functionality HC(T ) with O-bit long output and n + O(κ)-bit input from Receiver, supporting T computations, such that there is a NISC/HC(T ) scheme for Ff(T ) that makes a black-box use of a PRG, invoking the PRG O((κ + T )|C|) times, and with O((κ + T )k|C|) total communication.
引用论文
- Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. In: IEEE Conference on Computational Complexity, pp. 260–274. IEEE Computer Society, Los Alamitos (2005)
- Beaver, D.: Precomputing Oblivious Transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)
- Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: Proc. 28th STOC, pp. 479–488. ACM, New York (1996)
- Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 589–590. Springer, Heidelberg (1990)
- Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: STOC, pp. 503–513. ACM, New York (1990)
- Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)
- Cachin, C., Camenisch, J., Kilian, J., Muller, J.: One-Round Secure Computation and Secure Autonomous Mobile Agents. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000)
- Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-016 (2001), Previous version “A unified framework for analyzing security of protocols” availabe at the ECCC archive TR01-016. Extended abstract in FOCS 2001 (2001)
- Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved delegation of computation using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)
- Damgard, I., Ishai, Y., Krøigaard, M.: Perfectly Secure Multiparty Computation and the Computational Overhead of Cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)
- Damgard, I., Nielsen, J.B., Orlandi, C.: Essentially Optimal Universally Composable Oblivious Transfer. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 318–335. Springer, Heidelberg (2009)
- Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465– 482.
- Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178. ACM, New York (2009)
- Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)
- Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University Press, Cambridge (2004)
- Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM (ed.) Proc.19th STOC, pp. 218–229. ACM, New York (1987), See [15, ch. 7] for more details
- Horvitz, O., Katz, J.: Universally-Composable Two-Party Computation in Two Rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg (2007)
- Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)
- Ishai, Y., Kushilevitz, E.: On the Hardness of Information-Theoretic Multiparty Computation. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 439– 455. Springer, Heidelberg (2004)
- Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC, pp. 21–30. ACM, New York (2007)
- Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: STOC, pp. 433–442. ACM, New York (2008)
- Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)
- Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently, Preliminary full version on http://www.cs.uiuc.edu/̃mmp/
- Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)
- Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private Circuits II: Keeping Secrets in Tamperable Circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308– 327. Springer, Heidelberg (2006)
- Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)
- Kalai, Y.T., Raz, R.: Succinct non-interactive zero-knowledge proofs with preprocessing for logsnp. In: FOCS, pp. 355–366. IEEE, Los Alamitos (2006)
- Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31. ACM, New York (1988)
- Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs (extended abstract). In: FOCS, pp. 474–479. IEEE, Los Alamitos (1989)
- Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationallyprivate information retrieval. In: FOCS, pp. 364–373. IEEE, Los Alamitos (1997)
- Lindell, Y., Pinkas, B.: A proof of yao’s protocol for secure two-party computation. Electronic Colloquium on Computational Complexity (ECCC) (063) (2004)
- Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)
- Melchor, C.A., Gaborit, P., Herranz, J.: Additively homomorphic encryption with d-operand multiplications. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 138–154.
- Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458– 473. Springer, Heidelberg (2006)
- Mossel, E., Shpilka, A., Trevisan, L.: On epsilon-biased generators in nc0. Random Struct. Algorithms 29(1), 56–81 (2006)
- Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457 (2001)
- Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)
- Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386.
- Springer, Heidelberg (2009)
- 39. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571.
- Springer, Heidelberg (2008)
- 40. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)
- 41. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of Reducibility between Cryptographic Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)
- 42. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation (Workshop, Georgia Inst. Tech., Atlanta, Ga., 1977), pp. 169–179. Academic, New York (1978)
- 43. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In: FOCS, pp. 554–567 (1999)
- 44. Yao, A.C.-C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–167. IEEE, Los Alamitos (1986)
标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn