AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
The morphology, structure and crystalline phase of TiO2 nanotube array were characterized by the scanning electron microscopy and X-ray diffractometer

Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity.

Environmental science & technology, no. 13 (2007): 4735-4740

被引用286|浏览7
WOS SCOPUS
下载 PDF 全文
引用
微博一下

摘要

A highly ordered TiO2 nanotube array on Ti substrate was fabricated by using an electrochemical anodic oxidation method. The morphology, crystalline phase, and photoelectrochemical property of the nanotube array were characterized. The photocatalytic activity of the nanotube array was evaluated by the decolorization of methyl orange in aq...更多

代码

数据

0
简介
  • The heterogeneous photocatalysis of titanium oxide (TiO2) has become a hot subject in recent years as it is an attractive technique for completely eliminating perpetual chemical pollutants in the environment by using solar or artificial light illumination.
  • For comparison with the short nanotube array film, the 400 nm-thick TiO2 nanoparticle film on titanium substrate was prepared by using sol-gel method.
重点内容
  • The heterogeneous photocatalysis of titanium oxide (TiO2) has become a hot subject in recent years as it is an attractive technique for completely eliminating perpetual chemical pollutants in the environment by using solar or artificial light illumination
  • The highly ordered TiO2 nanotube array films with various morphologies were fabricated by the anodic oxidation method
  • The morphology, structure and crystalline phase of TiO2 nanotube array were characterized by the scanning electron microscopy (SEM) and X-ray diffractometer (XRD)
  • The photocatalytic activity of the TiO2 nanotube array in methyl orange (MO) aqueous solution, as a typical pollutant in the textile industries, was evaluated and compared with that of the TiO2 nanoparticle film prepared by the sol-gel method
  • For comparison with the short nanotube array film, the 400 nm-thick TiO2 nanoparticle film on titanium substrate was prepared by using sol-gel method
  • At the same anodization voltage (20 V), the nanotubes grown for anodization time of 1, 2, 5, 9 h have average lengths of 1.5, 2.5, 3.1, 3.5 μm, respectively, with almost the same tube diameter as the 0.4 μm length nanotubes
结果
  • The photogenerated charge carriers in the TiO2 nanotube structure might be separated more efficiently than the TiO2 nanoparticle film because of the short diffusion distance in the tube wall and the high contact area between the photocatalyst and electrolyte (29-31).
  • Photocatalytic Degradation of MO Using TiO2 Nanotube Array Film.
  • The apparent first-order rate constant of the photocatalytic degradation of MO with the assistance of TiO2 photocatalyst is significantly higher than that of MO self-photolysis.
  • From the plot of absorption vs wavelength (Figure 5), a decrease in the absorbance at 508 nm reflects the degradation of MO on the TiO2 photocatalyst, thereby it can be used as a measure of the photocatalytic activity.
  • Under the high-pressure mercury lamp illumination, the photocatalytic degradation rate of MO initially increases with increasing of the thickness of TiO2 nanotube array film, and has a down trend with an optimized efficiency of the MO photodegradation at the thickness of 2.5 μm in the experiments.
  • Using the tungstenhalogen lamp as the light source, the apparent rate constant k increases from 0.0178 to 0.0222 min-1 as the thickness of TiO2 nanotube film increases from 0.4 to 2.5 μm, and reaches an almost steady value at approximately 0.02 min-1.
结论
  • The species have a longer diffusion path to the interior TiO2 photocatalyst in the longer nanotube array film, and this may cause a decrease in photocatalytic degradation rate.
  • The possible reason may be on the one hand that the specific surface area of TiO2 nanotubes array is decreased with increasing of the diameter of nanotubes, resulting in a negative effect on photocatalytic activity.
表格
  • Table1: Effect of the Thickness of TiO2 Nanotube Array Film on the First-Order Rate Constant k of Photocatalytic Degradation thickness of TiO2 nanotubes film (μm)
  • Table2: The Effect of the Diameter of TiO2 Nanotubes on the First-Order Rate Constant k of Photocatalytic Degradation diameter of TiO2 nanotubes (nm) under high-pressure mercury lamp illumination apparent rate constant k (min-1) correlation coefficient R2 under tungsten-halogen lamp illumination apparent rate constant k (min-1) correlation coefficient R2. It is worth noting that the k values are not remarkably different from each other while using the same light source. This result suggests that for a given nanotube length, the influence of the tube diameter on the photocatalytic efficiency of nanotube array film is slight. The possible reason may be on the one hand that the specific surface area of TiO2 nanotubes array is decreased with increasing of the diameter of nanotubes, resulting in a negative effect on photocatalytic activity. On the other hand, the increase of light transmittance with the increasing of pore size may have a positive effect on photocatalytic activity (40). Thus, the apparent rate constants are slightly affected by the diameter of nanotubes, if the thickness of the TiO2 film is kept the same
Download tables as Excel
基金
  • We gratefully acknowledge the financial support from the National Natural Science Foundation of China (50571085), and Technical Program of Fujian Province (2005HZ01-3)
引用论文
  • (1) Fujishima, A.; Rao, T. N.; Trky, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 2000, 1, 1-21.
    Google ScholarLocate open access versionFindings
  • (2) Frank, S. N.; Bard, A. J. Heterogeneous Photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder. J. Am. Chem. Soc. 1977, 99, 303-304.
    Google ScholarLocate open access versionFindings
  • (3) Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. 2006, 9, 750-760.
    Google ScholarLocate open access versionFindings
  • (4) Sopyan, I.; Watanabe, M.; Murasawa, S.; Hashimoto, K.; Fujishima, A. An efficient TiO2 Thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation. J. Photochem. Photobio., A 1996, 98, 79-86.
    Google ScholarLocate open access versionFindings
  • (5) Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G.; Falaras, P. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal., B 2003, 42, 187-201.
    Google ScholarLocate open access versionFindings
  • (6) Li, F. B.; Li, X. Z. Photocatalytic properties of gold/gold ionmodified titanium dioxide for wastewater treatment. Appl. Catal., A 2002, 228, 15-27.
    Google ScholarLocate open access versionFindings
  • (7) Zainal, Z.; Lee, C. Y. Properties and photoelectrocatalytic behaviour of sol-gel derived TiO2 thin films. J. Sol-Gel Sci. Technol. 2006, 37, 19-25.
    Google ScholarLocate open access versionFindings
  • (8) Sirghi, L.; Nakamura, M.; Hatanaka, Y.; Takai, O. Atomic force microscopy study of the hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering and plasma enhanced chemical vapor depositions. Langmuir 2001, 17, 8199-8203.
    Google ScholarLocate open access versionFindings
  • (9) He, C.; Li, X. Z.; Graham, N.; Wang, Y. Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application. Appl. Catal., A 2006, 305, 5463.
    Google ScholarLocate open access versionFindings
  • (10) Yoshitake, H.; Sugihara, T.; Tatsumi, T. Preparation of wormholelike mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chem. Mater. 2002, 14, 1023-1029.
    Google ScholarLocate open access versionFindings
  • (11) Bessergenev, V. G.; Pereira, R. J. F.; Mateus, M. C.; Khmelinskii, I. V.; Vasconcelos, D. A.; Nicula, R.; Burkel, E.; Botelho, do Rego, A. M.; Saprykin, A. I. Study of physical and photocatalytic properties of titanium dioxide thin films prepared from complex precursors by chemical vapour deposition. Thin Solid Films 2006, 503, 29-39.
    Google ScholarLocate open access versionFindings
  • (12) Masuda, Y.; Ieda, S.; Koumoto, K. Site-selective deposition of anatase TiO2 in an aqueous solution using a seed layer. Langmuir 2003, 19, 4415-4419.
    Google ScholarLocate open access versionFindings
  • (13) Yu, H.; Lee, S. C.; Yu, J.; Ao, C. H. Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers. J. Mol. Catal. A: Chem. 2006, 246, 206-211.
    Google ScholarLocate open access versionFindings
  • (14) Rachel, A.; Subrahmanyam, M.; Boule, P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal., B 2002, 37, 301-308.
    Google ScholarLocate open access versionFindings
  • (15) Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331-3334.
    Google ScholarLocate open access versionFindings
  • (16) Mor, G. K.; Varghese, O. K.; Grimes, C. A. Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 2003, 18, 25882593.
    Google ScholarLocate open access versionFindings
  • (17) Macak, J. M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 2005, 44, 2100-2102.
    Google ScholarLocate open access versionFindings
  • (18) Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 2005, 44, 7463-7465.
    Google ScholarLocate open access versionFindings
  • (19) Cai, Q.; Paulose, M.; Varghese, O. K.; Grimes, C. A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 2005, 20, 230-236.
    Google ScholarLocate open access versionFindings
  • (20) Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 2006, 110, 16179-16184.
    Google ScholarLocate open access versionFindings
  • (21) Taveira, L. V.; Macak, J. M.; Sirotna, K.; Dick, L. F. P.; Schmuki, P. Voltage oscillations and morphology during the galvanostatic formation of self-organized TiO2 nanotubes. J. Electrochem. Soc. 2006, 153, B137-B143.
    Google ScholarLocate open access versionFindings
  • (22) Li, X. Z.; Li, F. B. Surface characterization and photocatalytic reactivity of innovative Ti/TiO2 and Ti/Pt-TiO2 mesh photoelectrodes. J. Appl. Electrochem. 2002, 32, 203-210.
    Google ScholarLocate open access versionFindings
  • (23) Erne, B. H.; Vanmackelbergh, D.; Kelly, J. J. Morphology and Strongly Enhanced Photoresponse of GaP Electrodes Made Porous by Anodic Etching. J. Electrochem. Soc. 1996, 143, 305314.
    Google ScholarLocate open access versionFindings
  • (24) Quan, X.; Yang, S. G.; Ruan, X. L.; Zhao, H. M. Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sic, Technol. 2005, 39, 3770-3775.
    Google ScholarLocate open access versionFindings
  • (25) Lai, Y.; Sun, L.; Chen, Y.; Zhuang, H.; Lin, C.; Chin, J. W. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 2006, 153, D123D127.
    Google ScholarLocate open access versionFindings
  • (26) Shen, G. X.; Chen, Y. C.; Lin, C. J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films 2005, 489, 130-136.
    Google ScholarLocate open access versionFindings
  • (27) Bahnemann, D. W.; Dillert, R.; Robertson, P. K. J. Photocatalysis: Initial Reaction Steps, in Chemical Physics of Nanostructured Semiconductors, Chapter 7; Kokorin, A. I., Bahnemann, D. W., Eds.; VSP BS: Eindhoven, The Netherlands, 2003.
    Google ScholarFindings
  • (28) Paulose, M.; Mor, G. K.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol., A 2006, 178, 8-15.
    Google ScholarLocate open access versionFindings
  • (29) Berger, S.; Tsuchiya, H.; Ghicov, A.; Schmuki, P. High photocurrent conversion efficiency in self-organized porous WO3. Appl. Phys. Lett. 2006, 88, 203119.
    Google ScholarLocate open access versionFindings
  • (30) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dyesensitized solar cells. Nano Lett. 2006, 6, 215-218.
    Google ScholarLocate open access versionFindings
  • (31) Park, J. H.; Kim, S.; Bard, A. J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 2006, 6, 24-28.
    Google ScholarLocate open access versionFindings
  • (32) Kim, Y.; Yoon, M. TiO2/Y-Zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium. J. Mol. Catal. A: Chem. 2001, 168, 257-263.
    Google ScholarLocate open access versionFindings
  • (33) Al-Oaradawi, S.; Salman, S. R. Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol., A 2002, 148, 161-168.
    Google ScholarLocate open access versionFindings
  • (34) Guettai, N.; Amar, H. A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II×ff: parametric study. Desalination 2005, 185, 427-437.
    Google ScholarLocate open access versionFindings
  • (35) Bauer, C.; Jacques, P.; Kalt, A. Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Chem. Phys. Lett. 1999, 307, 397-406.
    Google ScholarLocate open access versionFindings
  • (36) Sun, Z. Y.; Du, J. H.; Chen, H. S.; Gong, W. Q. FTIR study of nano-iron oxyhydroxides’ decoloration on the azo dye. Spectrosc. Spectral Anal. 2006, 26, 1226-1229.
    Google ScholarLocate open access versionFindings
  • (37) Berank, R.; Tsuchiya, H.; Sugishima, T.; Macak, J. M.; Taveira, L.; Fujimoto, S.; Kisch, H.; Schmuki, P. Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl. Phys. Lett. 2005, 87, 243114.
    Google ScholarLocate open access versionFindings
  • (38) Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P. Self-organized TiO2 nanotube layers as highly efficient photocatalysis. Small 2007, 2, 300-304.
    Google ScholarLocate open access versionFindings
  • (39) Chang, H. T.; Wu, N.; Zhu, F. A kinetic model for photocatalytic degradation of organic contaminants in a thin film TiO2 catalyst. Water Res. 2000, 34, 407-416.
    Google ScholarLocate open access versionFindings
  • (40) Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011-2075.
    Google ScholarLocate open access versionFindings
  • 4740 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 41, NO. 13, 2007
    Google ScholarFindings
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科