MAP Kinase Inactivation Is Required Only for G2–M Phase Transition in Early Embryogenesis Cell Cycles of the StarfishesMarthasterias glacialisandAstropecten aranciacus

Developmental Biology(1998)

引用 35|浏览13
暂无评分
摘要
Downregulation of MAP kinase is a universal consequence of fertilization in the animal kingdom. Here we show that oocytes of the starfishesAstropecten aranciacusandMarthasterias glacialiscomplete meiotic maturation and form a pronucleus when treated with 1-methyladenine and then complete DNA replication and arrest at G2 if not fertilized. Release of G2 by fertilization or a variety of parthenogenetic treatments is associated with inactivation of MAP kinase. Prevention of MAP kinase inactivation by microinjection of Ste11-ΔN, a constitutively active budding yeast MAP kinase kinase kinase, arrests fertilized eggs at G2 in either the first or the second mitotic cell cycle, in a dose-dependent manner. G1 arrest is never observed. Conversely, inactivation of MAP kinase by microinjection of the MAP kinase-specific phosphatase Pyst-1 releases mature starfish oocytes from G2 arrest. The role of MAP kinase in arresting cell cycle at various stages in oocytes of different animal species is discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要