AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
Contact angle is a measure of the degree of wetting or wettability of a surface by a liquid

Review of non-reactive and reactive wetting of liquids on surfaces.

Advances in Colloid and Interface Science, no. 2 (2007): 61-89

被引用285|浏览4
WOS EI
下载 PDF 全文
引用
微博一下

摘要

Wettability is a tendency for a liquid to spread on a solid substrate and is generally measured in terms of the angle (contact angle) between the tangent drawn at the triple point between the three phases (solid, liquid and vapour) and the substrate surface. A liquid spreading on a substrate with no reaction/absorption of the liquid by su...更多

代码

数据

0
简介
  • The process of wetting a solid by a liquid is of great technological importance. A large number of general/biological/ industrial/manufacturing/fabrication processes essentially involve wetting phenomenon [1,2].
  • Printing, painting, adhesion, lubrication, cleaning, coating, soldering, brazing and composite processing are few examples among the innumerable fields utilizing the phenomenon of wetting.
  • The basic soldering process depends on wetting for the formation of solder-to-base metal contact.
  • The solderable surfaces must allow the molten solder to wet and spread within the available time [3,4].
  • The well known “lotus effect” of plant surfaces towards water plays a vital role in self cleaning mechanism [5,6].
  • Using the same idea ultra or super hydrophobic surfaces have been developed which give water contact angles as high as 160° or more
重点内容
  • Various methods have been developed over the years to evaluate wettability of a solid by a liquid
  • The process of wetting a solid by a liquid is of great technological importance
  • Some applications require a good wetting between liquid and substrate surface whereas some others demand poor wetting or repellency
  • The removal of contaminating particles from plant surfaces is achieved by rolling water droplets which do not stick to the surface
  • Type of flux (WS, NC, RA, RMA) a No significant difference in the relaxation behaviour as well as
  • Contact angle is a measure of the degree of wetting or wettability of a surface by a liquid
结果
  • Type of flux (WS, NC, RA, RMA) a No significant difference in the relaxation behaviour as well as.
  • A reduction up to 70% has been observed in their experiments when temperature is increased from 190° to 230°
结论
  • Wetting of liquids on surfaces is a complex phenomenon and is of great technological importance since large number of industrial processes involve wetting.
  • Contact angle is a measure of the degree of wetting or wettability of a surface by a liquid.
  • The greatest difficulty in studying the wetting behaviour is obtaining reproducible results.
  • This is mainly due to the sensitivity of the contact angle and wetting to large number of factors discussed.
  • Sessile drop and wetting balance techniques are versatile, popular and provide reliable data
总结
  • Introduction:

    The process of wetting a solid by a liquid is of great technological importance. A large number of general/biological/ industrial/manufacturing/fabrication processes essentially involve wetting phenomenon [1,2].
  • Printing, painting, adhesion, lubrication, cleaning, coating, soldering, brazing and composite processing are few examples among the innumerable fields utilizing the phenomenon of wetting.
  • The basic soldering process depends on wetting for the formation of solder-to-base metal contact.
  • The solderable surfaces must allow the molten solder to wet and spread within the available time [3,4].
  • The well known “lotus effect” of plant surfaces towards water plays a vital role in self cleaning mechanism [5,6].
  • Using the same idea ultra or super hydrophobic surfaces have been developed which give water contact angles as high as 160° or more
  • Results:

    Type of flux (WS, NC, RA, RMA) a No significant difference in the relaxation behaviour as well as.
  • A reduction up to 70% has been observed in their experiments when temperature is increased from 190° to 230°
  • Conclusion:

    Wetting of liquids on surfaces is a complex phenomenon and is of great technological importance since large number of industrial processes involve wetting.
  • Contact angle is a measure of the degree of wetting or wettability of a surface by a liquid.
  • The greatest difficulty in studying the wetting behaviour is obtaining reproducible results.
  • This is mainly due to the sensitivity of the contact angle and wetting to large number of factors discussed.
  • Sessile drop and wetting balance techniques are versatile, popular and provide reliable data
表格
  • Table1: Contact angle data reported in the literature
  • Table2: Types of contact angles
  • Table3: Effect of roughness on contact angle/wettability
  • Table4: Effect of flux on contact angle/wettability
  • Table5: Effect of temperature on contact angle/wettability
  • Table6: Effect of trace impurity addition on contact angle/wettability
  • Table7: Spreading kinetics
  • Table8: Models of spreading
Download tables as Excel
基金
  • Type of flux (WS, NC, RA, RMA) a No significant difference in the relaxation behaviour as well as
  • Ga is reported to decrease the microhardness and increase the pasty range at concentrations N 2%
  • A reduction up to 70% has been observed in their experiments when temperature is increased from 190° to 230°
引用论文
  • 4. Thermodynamics of wetting
    Google ScholarFindings
  • 5. Kinetics of wetting
    Google ScholarFindings
  • 6. Modeling of spreading
    Google ScholarFindings
  • [1] Lavi B, Marmur A. Colloids Surf A 2004;250:409–14.
    Google ScholarFindings
  • [2] Bhola R, Chandra S. J Mater Sci 1999;34:4883–94.
    Google ScholarLocate open access versionFindings
  • [3] Manko HH. Solders and soldering. 3rd Edition. NY: McGraw-Hill Inc.; 1992. p. 1–153.
    Google ScholarFindings
  • [4] Frear DR, Jones WB, Kinsman KR. Solder mechanics—a state of the art assessment. A TMS Publication; 1991. p. 1–104.
    Google ScholarFindings
  • [5] He B, Lee J, Patankar NA. Colloids Surf A 2004;248:101–4.
    Google ScholarFindings
  • [6] Kijlstra J, Reihs K, Klamt A. Colloids Surf A 2002;206:521–9.
    Google ScholarFindings
  • [7] Lee CC, Kim J. IEEE 2005; 0-7803-9085-7/05.
    Google ScholarLocate open access versionFindings
  • [8] Schwartz AM, Tejada SB. J Colloid Interface Sci 1972;38–2:359–75.
    Google ScholarLocate open access versionFindings
  • [9] Vianco PT, Frear DR. JOM July 1993:14–9.
    Google ScholarFindings
  • [10] Lopez VH, Kennedy AR. J Colloid Interface Sci 2006;298–1:356–62.
    Google ScholarLocate open access versionFindings
  • [11] Schwartz MM, Aircraft S. Metals hand book, 10th edition, vol. Park, OH: ASM; 1991. p. 126–9.
    Google ScholarFindings
  • [12] Bernardin JD, Mudawar I, Walsh CB, Franses I. Int J Heat Mass Transfer 1997;40–5:1017–33.
    Google ScholarLocate open access versionFindings
  • [13] Sefiane K, Tadrist L, Douglas M. Int J Heat Mass Transfer 2003;46: 4527–34.
    Google ScholarLocate open access versionFindings
  • [14] Chandra S, di Marzo M, Qiao YM, Tartarini P. Fire Safety J 1996;27: 141–58.
    Google ScholarLocate open access versionFindings
  • [15] Adamson AW, Gast AP. Physical chemistry of surfaces. 6th Ed. New York: Wiley-Interscience; 1997. p. 347–79.
    Google ScholarFindings
  • [16] Long J, Hyder MN, Huang RYM, Chen P. Adv Colloid Interface Sci
    Google ScholarLocate open access versionFindings
  • [17] Eustathopoulos N. Acta Mater 1998;46–7:2319–27.
    Google ScholarLocate open access versionFindings
  • [18] Morra M, Occhiello E, Garbassi F. Adv Colloid Interface Sci 1990;32: 79–116.
    Google ScholarLocate open access versionFindings
  • [19] Davis JT, Rideal EK. Interfacial phenomena. 2nd Edition. NY: Academic Press; 1966. p. 1–52.
    Google ScholarFindings
  • [20] Quere D. Physica A 2002;313:32–46.
    Google ScholarLocate open access versionFindings
  • [21] Yoon SW, Choi WK, Lee HM. Scripta Mater 1999;40–3:297–302.
    Google ScholarLocate open access versionFindings
  • [22] Sauer BB, Kampert WG. J Colloid Interface Sci 1998;199:28–37.
    Google ScholarLocate open access versionFindings
  • [23] Zengerle R. (http://www.imtek.de/anwendungen/content/vorlesung/ 2005/mikrofluidik_i_5_-_surfacetension.pdf ).
    Findings
  • [24] Lam CNC, Kim N, Hui D, Kwok DY, Hair ML, Neumann AW. Colloids Surf A 2001;189:265–78.
    Google ScholarLocate open access versionFindings
  • [25] Bukat K, Sitek J, Hozu L, Bulwith R. Global SMT and Packaging Journal; December 2002. p. 1–8.
    Google ScholarLocate open access versionFindings
  • [26] Takao H, Tsukada T, Yamada K, Yamashita M, Hasegawa H. R & D
    Google ScholarFindings
  • [27] Hong SM, Park JY, Kang CS, Jung JP. IEEE Trans Comp Pack Techn 2003;26–1:255–61.
    Google ScholarLocate open access versionFindings
  • [28] Mackie AC. Circuits Assembly March 2003:26–35.
    Google ScholarLocate open access versionFindings
  • [29] Yu DQ, Zhao J, Wang L. J Alloys Compd 2004;76:170–5.
    Google ScholarLocate open access versionFindings
  • [30] Kang SC, Kim C, Muncy J, Schmidt M, Baldwin D. IEEE/SEMI International Electronics Manufacturing Technology Symposium; 2004.
    Google ScholarLocate open access versionFindings
  • [31] Saiz E, Hwang CW, Suganuma K, Tomsia AP. Acta Mater 2003;51: 3185–97.
    Google ScholarLocate open access versionFindings
  • [32] Yu DQ, Xie HP, Wang L. J Alloys Compd 2004;385:119–25.
    Google ScholarLocate open access versionFindings
  • [33] Lin CT, Lin KL. Appl Surf Sci 2003;214:243–58.
    Google ScholarLocate open access versionFindings
  • [34] Wang H, Wang F, Gao F, Ma X, Qian Y. J Alloys Compd 2007;433–1 (2):302–5.
    Google ScholarLocate open access versionFindings
  • [35] Marmur A. Adv Colloid Interface Sci 1994;50:121–41.
    Google ScholarLocate open access versionFindings
  • [36] Marmur A. Colloids Surf A 1996;116:55–61.
    Google ScholarFindings
  • [37] Bonn D, Eggers J, Meunier J, Rolley E. (http://www.maths.bris.ac.uk/~majge/
    Findings
  • [38] Kandlikar SG, Steinke ME. Int J Heat Mass Transfer 2002;45:3771–80.
    Google ScholarLocate open access versionFindings
  • [39] Extrand CW, Kumagai YJ. Colloid Interface Sci 1997;191:378–83.
    Google ScholarLocate open access versionFindings
  • [40] Kamusewitz H, Possart W, Paul D. Colloids Surf A 1999;156:271–9.
    Google ScholarFindings
  • [41] Plas HAV, Cinque RB, Mei Z, Holder H. Hewlett-Packard J 1997:1–7.
    Google ScholarLocate open access versionFindings
  • [42] Yost FG, Michael JR, Eisenmann ET. Acta metal 1995;43–1:299–305.
    Google ScholarLocate open access versionFindings
  • [43] Woodward RP. (http://www.firsttenangstroms.com)p.1–8.
    Findings
  • [44] Martorano KM, Martorano MA, Brandi SD. Engenharia Metalugica/
    Google ScholarLocate open access versionFindings
  • [45] Sattiraju SV, Dang B, Johnson RW, Li Y, Smith JS, Bozack MJ. IEEE Trans Electron Packag Manuf July 2002;25–3:168–84.
    Google ScholarLocate open access versionFindings
  • [46] Yu DQ, Wang L, Wu CML, Law CMT. J Alloys Compd 2005;389–1,2: 153–8.
    Google ScholarLocate open access versionFindings
  • [47] Solomon HD, Delair RE, Thyssen J. Weld Res October 2003:278–87.
    Google ScholarLocate open access versionFindings
  • [48] Yasuda K, Akamizu H, Fujimoto K, Nakata S. IEEE/CPMT International Electronics Manufacturing Technology Symposium; 2000. p. 247–52.
    Google ScholarLocate open access versionFindings
  • [49] Awasthi A, Bhatt YJ, Garg SP. Meas Sci Technol 1996;7:753–7.
    Google ScholarLocate open access versionFindings
  • [50] Shibata H, Jiang X, Valdez M, Cramb AW. Met Mat Trans B 2004;35: 179–80.
    Google ScholarFindings
  • [51] Wolansky G, Marmur A. Colloids Surf A 1999;156:381–8.
    Google ScholarFindings
  • [52] Nakae H, Inui R, Hirata Y, Saito H. Acta Mater 1998;46–7:2313–8.
    Google ScholarLocate open access versionFindings
  • [53] Sakai H, Fujii T. J Colloid Interface Sci 1999;210:152–6.
    Google ScholarLocate open access versionFindings
  • [54] Shuttleworth R, Bailey GLJ. Disc Faraday Soc 1948;3:16.
    Google ScholarFindings
  • [55] Uelzen T, Muller J. Thin Solid Films 2003;434:311–5.
    Google ScholarLocate open access versionFindings
  • [56] Hitchcock SJ, Carroll NT, Nicholas MG. J Mater Sci 1981;16:714.
    Google ScholarLocate open access versionFindings
  • [57] Cazabat AM, Stuart MAC. J Phys Chem 1986;90:5845–9.
    Google ScholarLocate open access versionFindings
  • [58] Volpe CD, Maqniglio D, Morra M, Siboni S. Colloids Surf A 2002;206: 47–67.
    Google ScholarLocate open access versionFindings
  • [59] Sikalo S, Marengo M, Tropea C, Ganic EN. Exp Ther Fluid Sci 2002;25: 503–10.
    Google ScholarLocate open access versionFindings
  • [60] Li WT, Charters RB, Davies BL, Mar L. Appl Surf Sci 2004;233: 227–33.
    Google ScholarLocate open access versionFindings
  • [61] Takata Y, Hidaka S, Yamashita A, Yamamoto H. Int J Heat Fluid Flow
    Google ScholarLocate open access versionFindings
  • [62] Callewaert M, Gohy JF, Gillain CCD, Petermann LB, Rouxhet PG. Surf Sci 2005;575:125–35.
    Google ScholarLocate open access versionFindings
  • [63] Nicholas MG, Crispin RM. J Mater Sci 1986;21:522.
    Google ScholarLocate open access versionFindings
  • [64] Apel-Paz M, Marmur A. Colloids Surf A 1999;146:273–9.
    Google ScholarFindings
  • [65] McHale G, Newton ML. Colloids Surf A 2002;206:193–201.
    Google ScholarFindings
  • [66] Claesson E, Choquenet L, Nilson M, Brasage — 97.
    Google ScholarFindings
  • [67] Vaynman S, Fine ME. Scripta Mater 1999;41–12:1269–71.
    Google ScholarLocate open access versionFindings
  • [68] Peebles DE, Peebles HC, Ohlhausen JA. Colloids Surf A 1998;144: 89–114.
    Google ScholarFindings
  • [69] Wu CML, Yu DQ, Law CMT, Wang L. Mater Sci Eng R 2004;44: 1–44.
    Google ScholarLocate open access versionFindings
  • [70] Farooq M, Ray S, Sarkhel A, Goldsmith C. Electronic Components and Technology Conference; 2001. p. 978–86.
    Google ScholarLocate open access versionFindings
  • [71] Abtew M, Selvaduray G. Mater Sci Eng R 2000;27:95–141.
    Google ScholarLocate open access versionFindings
  • [72] de Ruijter M, Kolsh P, Voue M, De Coninck J, Rabe JP. Colloids Surf A 1998;144:235–43.
    Google ScholarLocate open access versionFindings
  • [73] Kang SC, Baldwin DF. 8th Int Symp Adv Pack Mat IEEE; 2002. p. 47–53.
    Google ScholarFindings
  • [74] Shen P, Fujii H, Matsumoto T, Nogi K. Met Mat Trans A 2004;35A: 583–8.
    Google ScholarFindings
  • [75] Fujiuchi S. 11th IEEE/CHMT International Electronics Manufacturing Technology Symposium; 1991. p. 163–5.
    Google ScholarLocate open access versionFindings
  • [76] Kitajima M, Shono T. Microelectron Reliab 2005;45–7,8:1208–14.
    Google ScholarLocate open access versionFindings
  • [77] Yin L, Meschter SJ, Singler TJ. Acta Mater 2004;52:2873–88.
    Google ScholarLocate open access versionFindings
  • [78] Mortensen A, Drevet B, Eustathopoulos N. Scripta Mater 1997;36–6: 645–51.
    Google ScholarLocate open access versionFindings
  • [79] Chen K, Lin KL. International Symposium on Electronic Materials and Packaging; 2002. p. 49–54.
    Google ScholarFindings
  • [80] Wang L, Yu DQ, Zhao J, Huang ML. Mater Lett 2002;56:1039–42.
    Google ScholarLocate open access versionFindings
  • [81] Suganuma K, Muata T, Noguchi H, Toyoda Y. J Mater Res 2000;15–4: 884–91.
    Google ScholarLocate open access versionFindings
  • [82] Prasad LC, Mikula A. J Alloys Compd 1999;282:279–85.
    Google ScholarLocate open access versionFindings
  • [83] Warwick M., Implementing lead-free soldering — European Consortium
    Google ScholarFindings
  • [84] Suganuma K. Curr Opin Solid State Mater Sci 2001;5:55–64.
    Google ScholarLocate open access versionFindings
  • [85] Bradley III E, Hranisavljevic J. IEEE Trans Electron Packag Manuf October 2001;24–4:255–60.
    Google ScholarLocate open access versionFindings
  • [86] Chang TC, Hon MH, Chang CH, Wang MC. International Symposium of Electronic Materials and Packaging; 2001. p. 216–8.
    Google ScholarLocate open access versionFindings
  • [87] Li GY, Chen BL, Tey JN. IEEE Trans Electron Packag Manuf January 2004;27–1:77–85.
    Google ScholarLocate open access versionFindings
  • [88] Chuang CM, Shi PC, Lin KL. International Symposium on Electronic Materials and Packaging; 2002. p. 360–5.
    Google ScholarLocate open access versionFindings
  • [89] Theriault M, Blostein P. SMT; June 2000.
    Google ScholarFindings
  • [90] Extrand CW. J Colloid Interface Sci 1993;157:72–6.
    Google ScholarLocate open access versionFindings
  • [91] Contreras A, Leon CA, Drew RAL, Bedolla E. Scripta Mater 2003;48: 1625–30.
    Google ScholarLocate open access versionFindings
  • [92] Yost FG. Scripta Mater 2000;42:801–6.
    Google ScholarLocate open access versionFindings
  • [93] Chidambaram PR, Edwards GR, Olson DL. Met Mat Trans B 1992;23B: 215–22.
    Google ScholarFindings
  • [94] Landry K, Eustathopoulos N. Acta Mater 1996;44–10:3923–32.
    Google ScholarLocate open access versionFindings
  • [95] Eustathopoulos N, Garandet JP, Drevet B. Phil Trans R Soc Lond A 1998;356:871–84.
    Google ScholarFindings
  • [96] Drevet B, Landry K, Vikner P, Eustathopoulos N. Scripta Mater 1996;35–11: 1265–70.
    Google ScholarLocate open access versionFindings
  • [97] Landry K, Kalogeropoulou S, Eustathopoulos N, Naidich Y, Krasovsky V. Scripta Mater 1996;34–6:841–6.
    Google ScholarLocate open access versionFindings
  • [98] Espie L, Drevet B, Eustathopoulos N. Met Mat Trans A 1994;25A: 599–605.
    Google ScholarFindings
  • [99] Eustathopoulos N. Curr Opin Solid State Mater Sci 2005;9–4(5):152–60.
    Google ScholarLocate open access versionFindings
  • [100] Schwartz AM. Adv Colloid Interface Sci 1975;4:349–74.
    Google ScholarLocate open access versionFindings
  • [101] Coninck JD, de Ruijter MJ, Voue M. Curr Opin Colloid Interface Sci 2001;6: 49–53.
    Google ScholarLocate open access versionFindings
  • [102] Haferl S, Butty V, Poulikakos D, Giannakouros J, Boomsma K, Megaridis CM, Nayagam V. Int J Heat Mass Transfer 2001;44:3513–28.
    Google ScholarLocate open access versionFindings
  • [103] Pasandideh-Fard M, Bhola R, Chandra S, Mostaghimi J. Int J Heat Mass Transfer 1998;41:2929–45.
    Google ScholarLocate open access versionFindings
  • [104] Aziz SD, Chandra S. Int J Heat Mass Transfer 2000;43:2841–57.
    Google ScholarLocate open access versionFindings
  • [105] Haferl S, Poulikakos D. Int J Heat Mass Transfer 2003;46:535–50.
    Google ScholarLocate open access versionFindings
  • [106] Attinger D, Zhao Z, Poulikakos D. Trans ASME 2000;122:544–56.
    Google ScholarLocate open access versionFindings
  • [107] Bayer IS, Megaridis CM. XXI ICTAM; Aug. 15–21 2004.
    Google ScholarFindings
  • [108] Alteraifi AM, Herbawi A. The forth annual UAE University Research
    Google ScholarFindings
  • [109] Starov VM, Zhdanov SA, Kosvintsev SR, Sobolev VD, Velarde MG. Adv Colloid Interface Sci 2003;104:123–58.
    Google ScholarLocate open access versionFindings
  • [110] Blake TD, Dobson RA, Ruschak KJ. J Colloid Interface Sci 2004;279: 198–205.
    Google ScholarLocate open access versionFindings
  • [111] Wyart FB, de Gennes PG. Adv Colloid Interface Sci 1992;39:1–11.
    Google ScholarLocate open access versionFindings
  • [112] Yost FG, Rye RR, Mann Jr JA. Acta Mater 1997;45–12:5337–45.
    Google ScholarLocate open access versionFindings
  • [113] Yost FG, O'toole EJ. Acta Mater 1998;46-14:5143–51.
    Google ScholarLocate open access versionFindings
  • [114] Marmur A. Adv Colloid Interface Sci 1983;19:75–102.
    Google ScholarLocate open access versionFindings
  • [115] Yost FG, Sackinger PA, O'toole EJ. Acta Mater 1998;46–7:2329–36.
    Google ScholarLocate open access versionFindings
  • [116] Vasilchina H, Tzonova I, Petrov JG. Colloids Surf A 2004;250:317–24.
    Google ScholarFindings
  • [117] Gu Y, Li D. Colloids Surf A 1998;142:243–56.
    Google ScholarFindings
  • [118] Erickson D, Blackmore B, Li D. Colloids Surf A 2001;182:109–22.
    Google ScholarLocate open access versionFindings
  • [119] Blake TD. J Colloid Interface Sci 2006;299–1:1–13.
    Google ScholarLocate open access versionFindings
  • [120] Seveno D. (http://thesis.ulb.ac.be:8002/ETD-db)2004; p.14–15.
    Findings
  • [121] Ranabothu SR, Karnezis C, Dai LL. J Colloid Interface Sci 2005;288:213–21.
    Google ScholarLocate open access versionFindings
  • [122] Starov VM, Kalinin VV, Chen JD. Adv Colloid Interface Sci 1994;50:187–221.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
小科