Heavy metal detoxification in eukaryotic microalgae

Chemosphere, no. 1 (2006): 1-10

被引用290|浏览4
EI WOS
下载 PDF 全文
引用
微博一下

摘要

Microalgae are aquatic organisms possessing molecular mechanisms that allow them to discriminate non-essential heavy metals from those essential ones for their growth. The different detoxification processes executed by algae are reviewed with special emphasis on those involving the peptides metallothioneins, mainly the post transcriptiona...更多

代码

数据

0
简介
  • Aquatic and terrestrial organisms have developed diverse strategies to maintain an equilibrated relation with heavy metal ions present and available in the surrounding medium.
  • Microalgae, related eukaryotic photosynthetic organisms, and some fungi have preferentially developed the production of peptides capable to bind heavy metals
  • These molecules, as organometallic complexes, are further partitioned inside vacuoles to facilitate appropriate control of the cytoplasmic concentration of heavy metal ions, preventing or neutralizing their potential toxic effect (Cobbett and Goldsbrough, 2002).
  • In contrast to this mechanism used by eukaryotes, prokaryotic cells employ ATPconsuming efflux of heavy metals or enzymatic change of speciation to achieve detoxification
重点内容
  • Aquatic and terrestrial organisms have developed diverse strategies to maintain an equilibrated relation with heavy metal ions present and available in the surrounding medium
  • Two principal mechanisms have been identified, one which prevents the indiscriminate entrance of heavy metal ions into the cell, i.e., exclusion, and the other which prevents bioavailability of these toxic ions once inside the cell, i.e., the formation of complexes
  • The molecules responsible for the first mechanism are extra-cellular polymers, mainly carbohydrates, and those responsible for the second are peptides derived from glutathione, the class III metallothioneins (MtIII)
  • These MtIII peptides are a quick response of the cell to sudden and constant heavy metal stress and it is energy dependent transport to the vacuole of the cell in addition to accompanying mechanisms may confer tolerance to algal phenotypes
结果
结论
  • Algae are predominantly aquatic organisms that must be able to discriminate between essential and non-essential heavy metal ions
  • They must maintain nontoxic concentrations of these ions inside their cells.
  • The molecules responsible for the first mechanism are extra-cellular polymers, mainly carbohydrates, and those responsible for the second are peptides derived from glutathione, the class III metallothioneins (MtIII)
  • These MtIII peptides are a quick response of the cell to sudden and constant heavy metal stress and it is energy dependent transport to the vacuole of the cell in addition to accompanying mechanisms may confer tolerance to algal phenotypes.
  • The appearance of gene encoded class II type-metallothioneins in algae requires elucidation of the different responsibilities of both gene encoding and enzyme synthesized heavy metal binding peptides
总结
  • Introduction:

    Aquatic and terrestrial organisms have developed diverse strategies to maintain an equilibrated relation with heavy metal ions present and available in the surrounding medium.
  • Microalgae, related eukaryotic photosynthetic organisms, and some fungi have preferentially developed the production of peptides capable to bind heavy metals
  • These molecules, as organometallic complexes, are further partitioned inside vacuoles to facilitate appropriate control of the cytoplasmic concentration of heavy metal ions, preventing or neutralizing their potential toxic effect (Cobbett and Goldsbrough, 2002).
  • In contrast to this mechanism used by eukaryotes, prokaryotic cells employ ATPconsuming efflux of heavy metals or enzymatic change of speciation to achieve detoxification
  • Results:

    Mendoza-Cozatl and Moreno-Sanchez (2005) working with E. gracilis, found that more than 60% of the accumulated Cd2+ resides inside the chloroplast.
  • Conclusion:

    Algae are predominantly aquatic organisms that must be able to discriminate between essential and non-essential heavy metal ions
  • They must maintain nontoxic concentrations of these ions inside their cells.
  • The molecules responsible for the first mechanism are extra-cellular polymers, mainly carbohydrates, and those responsible for the second are peptides derived from glutathione, the class III metallothioneins (MtIII)
  • These MtIII peptides are a quick response of the cell to sudden and constant heavy metal stress and it is energy dependent transport to the vacuole of the cell in addition to accompanying mechanisms may confer tolerance to algal phenotypes.
  • The appearance of gene encoded class II type-metallothioneins in algae requires elucidation of the different responsibilities of both gene encoding and enzyme synthesized heavy metal binding peptides
基金
引用论文
  • Abd-EL-Monem, H.M., Corradi, M.G., Gorbi, G., 1998. Toxicity of copper and zinc to two strains of Scenedesmus acutus having different sensitivity to chromium. Environ. Exp. Bot. 40, 59–66.
    Google ScholarLocate open access versionFindings
  • Adey, W.H., Luckett, C., Smith, M., 1996. Purification of industrially contaminated groundwaters using controlled ecosystems. Ecol. Eng. 7, 191–212.
    Google ScholarLocate open access versionFindings
  • Ahner, B.A., Price, N.M., Morel, F.M.M., 1994. Phytochelatin production by marine phytoplankton at low free metal ion concentrations: laboratory studies and field data from Massachusetts Bay. Proc. Natl. Acad. Sci. 91, 8433–8436.
    Google ScholarLocate open access versionFindings
  • Ahner, B.A., Kong, S., Morel, F.M.M., 1995. Phytochelatin production in marine algae. 1. an interspecies comparison. Limnol. Ocenogr. 40, 649–657.
    Google ScholarLocate open access versionFindings
  • Ahner, B.A., Morel, F.F.M., 199Phytochelatin production in marine algae. 2. induction by various metals. Limnol. Oceanogr. 40, 658–665.
    Google ScholarLocate open access versionFindings
  • Aksu, Z., Egretli, G., Kutsal, T., 1998. A comparative study of copper (II) biosorption on Ca-alginate, agarose and immobilized C. vulgaris in a packed-bed column. Proc. Biochem. 33, 393–400.
    Google ScholarLocate open access versionFindings
  • Aviles, C., Loza-Tavera, H., Terry, N., Moreno-Sanchez, R., 2003. Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis. Arch. Microbiol. 180, 1–10.
    Google ScholarLocate open access versionFindings
  • Backer, M., Fahselt, D., Wu, C.T., 2004. Free proline content is positively correlated with copper tolerance of the lichen photobiont Trebouxia erici (Chlorophyta). Plant Sci. 167, 151–157.
    Google ScholarLocate open access versionFindings
  • Ballan-Dufrancais, C., Marcaillou, C., Amiard-Triquet, C., 1991. Response of the phytoplanktonic alga Tetraselmis suecica to copper and silver exposure: vesicular metal bioaccumulation and lack of starch bodies. Biol. Cell. 72, 103–112.
    Google ScholarLocate open access versionFindings
  • Canizares-Villanueva, R.O., Gonzalez-Moreno, S., Domınguez-Bocanegra, A.R., 2001.
    Google ScholarLocate open access versionFindings
  • Growth, nutrient assimilation and cadmium removal by suspended and immobilized Scenedesmus acutus cultures: influence of immobilization matrix. In: Chen, F., Jiang, Y. (Eds.), Algae and their Biotechnological Potential. Kluwer Publishers, Dordrecht, The Netherlands, pp. 147–161.
    Google ScholarLocate open access versionFindings
  • Cazale, A.C., Clemens, S., 2001. Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEES Lett. 507, 215–219.
    Google ScholarLocate open access versionFindings
  • Clemens, S., Kim, E.J., Neumann, D., Schroeder, J.I., 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. 18, 3325–3333.
    Google ScholarLocate open access versionFindings
  • Cobbett, C., Goldsbrough, P., 2002. Phytochelatin and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53, 159–182.
    Google ScholarLocate open access versionFindings
  • Craggs, R.J., Adey, W.H., Jenson, K.R., St. John, M.S., Green, G.F., Oswald, W.J., 1996. Phosphorous removal from wastewater using and algal turf scrubber. Water Sci. Technol. 33, 191–198.
    Google ScholarLocate open access versionFindings
  • Dameron, C.T., Reese, R.N., Mehra, R.K., Kortan, A.R., Caroll, P.J., Steigerwald, M.L., Brus, L.E., Winge, D.R., 1989. Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338, 596– 597.
    Google ScholarLocate open access versionFindings
  • de Miranda, J.R., Thomas, M.A., Thurman, D.A., Tomsett, A.B., 1990. Metallothionein genes from the flowering plant Mimulus guttatus. FEBS Lett. 260, 277–280.
    Google ScholarLocate open access versionFindings
  • Domınguez-Solıs, J.R., Gutierrez-Alcala, G., Romero, L.C., Gotor, C., 2001. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J. Biol. Chem. 276, 9297–9302.
    Google ScholarLocate open access versionFindings
  • Domınguez, M.J., Gutierrez, F., Leon, R., Vılchez, C., Vega, J.M., Vigara, J., 2003. Cadmium increases the activity levels of glutamate dehydrogenase and cysteine synthase in Chlamydomonas reinhardtii. Plant Physiol. Biochem. 41, 828–832.
    Google ScholarLocate open access versionFindings
  • Eccles, H., 1999. Treatment of metal-contaminated wastes: why select a biological process? TIBTECH 17, 462–465.
    Google ScholarLocate open access versionFindings
  • el-Enany, A.E., Issa, A.A., 2001. Proline alleviates heavy metal stress in Scenedesmus armatus. Folia Microbiol. 46, 227–230.
    Google ScholarLocate open access versionFindings
  • Fan, A.M., 1996. Assessment of metals in drinking water with specific references to lead and arsenic. In: Chang, L.W. (Ed.), Toxicology of Heavy Metals. CRC Press Inc., Boca Raton, FL, pp. 39–53.
    Google ScholarLocate open access versionFindings
  • Gaur, J.P., Rai, L.C., 2001. Heavy metal tolerance in algae. In: Rai, L.C., Gaur, J.P. (Eds.), Algal Adaptation to Environmental Stresses. Physiological, Biochemical and Molecular Mechanisms. SpringerVerlag, Berlin, pp. 363–388.
    Google ScholarLocate open access versionFindings
  • Gekeler, W., Grill, E., Winnacker, E.L., Zenk, M.H., 1988. Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch. Microbiol. 150, 197–202.
    Google ScholarLocate open access versionFindings
  • Grill, E., Winnacker, E.L., Zenk, M.H., 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230, 674–676.
    Google ScholarLocate open access versionFindings
  • Grill, E., Winnacker, E.L., Zenk, M.H., 1987.
    Google ScholarLocate open access versionFindings
  • Grill, E., Loffler, S., Winnacker, E.L., Zenk, M.H., 1989.
    Google ScholarLocate open access versionFindings
  • Ha, S.B., Smith, A.P., Howden, R., Dietrich, W.M., Bugg, S., O’Connell, M.J., Goldsbrough, P.B., Cobbett, C.S., 1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11, 1153–1163.
    Google ScholarLocate open access versionFindings
  • Heuillet, E., Moreau, A., Halpren, S., Jeanne, N., Puiseux-Dao, S., 1986. Cadmium binding to a thiol molecule in vacuoles of Dunaliella bioculata contaminated with CdCl2: electron probe microanalysis. Biol. Cell. 58, 79–86.
    Google ScholarLocate open access versionFindings
  • Hirata, K., Tsujimoto, Y., Namba, T., Ohta, T., Hirayanagi, N., Miyasaka, H., Zenk, M.H., Miyamoto, K., 2001. Strong induction of phytochelatin synthesis by zinc in marine green algae, Dunaliella tertiolecta. J. Biosci. Bioeng. 92, 24–29.
    Google ScholarLocate open access versionFindings
  • Hoffmann, J.P., 1998. Wastewater treatment with suspended and nonsuspended algae. J. Phycol. 34, 757–763.
    Google ScholarLocate open access versionFindings
  • Holtorf, H., Guitton, M.C., Reski, R., 2002. Plant functional genomics. Naturwissenschaften 89, 235–249.
    Google ScholarLocate open access versionFindings
  • Howden, R., Andersen, C.R., Goldsbrough, P.B., Cobbett, C.S., 1995a. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol. 107, 1067–1073.
    Google ScholarLocate open access versionFindings
  • Howden, R., Goldsbrough, P.B., Andersen, C.R., Cobbett, C.S., 1995b. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107, 1059–1066.
    Google ScholarLocate open access versionFindings
  • Howe, G., Merchant, S., 1992. Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii. Plant Physiol. 98, 127–136.
    Google ScholarLocate open access versionFindings
  • Jervis, L., Rees-Naesborg, R., Brown, M., 1997. Biochemical responses of the marine macroalgae Ulva lactuca and Fucus vesiculosus to cadmium and copper from sequestration to oxidative stress. Biochem. Soc. Trans. 25, 63s. Knauer, K., Behra, R., Sigg, L., 1997. Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (Chlorophyta). J. Phycol. 33, 596–601.
    Google ScholarLocate open access versionFindings
  • Knauer, K., Ahner, B., Xue, H.B., Sigg, L., 1998. Metal and phytochelatin content in phytoplankton from freshwater lakes with different metal concentrations. Environ. Toxicol. Chem. 17, 2444–2452.
    Google ScholarLocate open access versionFindings
  • Kneer, R., Zenk, M.H., 1997. The formation of Cd–phytochelatin complexes in plant cell cultures. Phytochemistry 44, 69–74.
    Google ScholarLocate open access versionFindings
  • Lee, J.G., Ahner, B.A., Morel, F.M.M., 1996. Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environ. Sci. Technol. 30, 1814–1821.
    Google ScholarLocate open access versionFindings
  • Loeffler, S., Hochberger, A., Grill, E., Winnacker, E.L., Zenk, M.H., 1989. Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett. 258, 42–46.
    Google ScholarLocate open access versionFindings
  • Marsalek, B., Rojıckova, R., 1996. Stress factors enhancing production of algal exudates: a potential self-protective mechanism? Z. Naturforsch. 51, 646–650.
    Google ScholarLocate open access versionFindings
  • Matsunaga, T., Takeyama, H., Nakao, T., Yamazawa, A., 1999. Screening of marine microalgae for bioremediation of cadmiumpolluted seawater. J. Biotechnol. 70, 33–38.
    Google ScholarLocate open access versionFindings
  • Mehra, R.K., Kodati, V.R., Abdullah, R., 1995. Chain length-dependent Pb(II)-coordination in phytochelatins. Biochem. Bioph. Res. Commun. 215, 730–736.
    Google ScholarLocate open access versionFindings
  • Mendoza-Cozatl, D.G., Moreno-Sanchez, R., 2005. Cd2+ transport and storage in the chloroplast of Euglena gracilis. Biochim. Bioph. Acta 1706, 88–97.
    Google ScholarLocate open access versionFindings
  • Mendoza-Cozatl, D., Loza-Tavera, H., Hernandez-Navarro, A., MorenoSanchez, R., 2004. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protist and plants. FEMS Microbiol. Rev. 29, 653–671.
    Google ScholarLocate open access versionFindings
  • Mitsch, W.J., Wise, K.M., 1998. Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Res. 32, 1888–1900.
    Google ScholarLocate open access versionFindings
  • Morelli, E., Scarano, G., 2001. Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Mar. Environ. Res. 52, 383–395.
    Google ScholarLocate open access versionFindings
  • Morelli, E., Scarano, G., 2004. Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci. 167, 289–296.
    Google ScholarLocate open access versionFindings
  • Morris, C.A., Nicolaus, B., Sampson, V., Harwood, J.L., Kille, P., 1999. Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochem. J. 338, 553– 560.
    Google ScholarLocate open access versionFindings
  • Nagel, K., Adelmeier, U., Voigt, J., 1996. Subcellular distribution of cadmium in the unicellular green alga Chlamydomonas reinhardtii. J. Plant Physiol. 149, 86–90.
    Google ScholarLocate open access versionFindings
  • Nassiri, Y., Mansot, J.L., Wery, J., Ginsburger-Vogel, T., Amiard, J.C., 1997. Ultraestructural and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatom Skeletonema costatum. Arch. Environ. Contam. Toxicol. 33, 147–155.
    Google ScholarLocate open access versionFindings
  • Nies, D.H., 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51, 730–750.
    Google ScholarLocate open access versionFindings
  • Nriagu, J.O., Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333, 134– 139.
    Google ScholarLocate open access versionFindings
  • Ortiz, D.F., Kreppel, L., Speiser, D.M., Scheel, G., McDonald, G., Ow, D.W., 1992. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 11, 3491–3499.
    Google ScholarLocate open access versionFindings
  • Ortiz, D.F., Ruscitti, T., McCue, K.F., Ow, D.W., 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-Type vacuolar membrane protein. J. Biol. Chem. 270, 4721–4728.
    Google ScholarLocate open access versionFindings
  • Oswald, W.J., 1988. Micro-algae and waste-water treatment. In: Borowitzka, M.A., Borowitzka, L.J. (Eds.), Micro-algal Biotechnology. Cambridge University Press, pp. 305–328.
    Google ScholarFindings
  • Oven, M., Page, I.E., Zenk, M.H., Kutchan, T.M., 2002. Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max. J. Biol. Chem. 277, 4747–4754.
    Google ScholarLocate open access versionFindings
  • Pawlik-Skowronska, B., 2003. When adapted to high zinc concentrations the periphytic green alga Stigeoclonium tenue produces high amounts of novel phytochelatin-related peptides. Aquat. Toxicol. 62, 155–163.
    Google ScholarLocate open access versionFindings
  • Pawlik-Skowronska, B., Pirszel, J., Kalinowska, R., Skowronski, T., 2004. Arsenic availability, toxicity and direct role of GSH and phytochelatin in As detoxification in the green alga Stichococcus bacillaris. Aquat. Toxicol. 70, 201–212.
    Google ScholarLocate open access versionFindings
  • Pena-Castro, J.M., Martınez-Jeronimo, F., Esparza-Garcıa, F., Canizares-Villanueva, R.O., 2004. Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metal stress. Chemosphere 57, 1629–1636.
    Google ScholarLocate open access versionFindings
  • Perez-Rama, M., Herrero Lopez, C., Abalde Alonso, J., Torres Vaamonde, E., 2001. Class III metallothioneins in response to cadmium toxicity in the marine microalga Tetraselmis suecica (Kylin) Butch. Environ. Toxicol. Chem. 20, 2061–2066.
    Google ScholarLocate open access versionFindings
  • Perrein-Ettajani, H., Amiard, J.C., Haure, J., Renaud, C., 1999. Effets des metaux (Ag, Cd, Cu) sur la composition biochimique et compartimentation de ces metaux chez deux microalgues Skeletonema costatum et Tetraselmis suecica. Can. J. Fish. Aquat. Sci. 56, 1757–1765.
    Google ScholarLocate open access versionFindings
  • Phillips, P., Bender, J., Simms, R., Rodriguez-Eaton, S., Britt, C., 1995. Manganese removal from acid coal-mine drainage by a pond containing green algae and microbial mat. Water Sci. Technol. 31, 161–170.
    Google ScholarLocate open access versionFindings
  • Pistocchi, R., Mormile, M.A., Guerrini, F., Isani, G., Boni, L., 2000. Increased production of extra- and intracellular metal–ligands in phytoplankton exposed to copper and cadmium. J. Appl. Phycol. 12, 469–477.
    Google ScholarLocate open access versionFindings
  • Rai, V., Vajpayee, P., Singh, S.N., Mehrotra, S., 2004. Effect of chromium accumulation on photosynthesis pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci. 67, 1159–1169.
    Google ScholarLocate open access versionFindings
  • Rauser, W.E., 1990. Phytochelatins. Annu. Rev. Biochem. 59, 61–86.
    Google ScholarLocate open access versionFindings
  • Rijstenbil, J.W., Gerringa, L.J.A., 2002. Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Aquat. Toxicol. 56, 115–131.
    Google ScholarLocate open access versionFindings
  • Rijstenbil, J.W., Wijnholds, J.A., 1996. HPLC analysis of nonprotein thiols in planktonic diatoms: pool size, redox state and response to copper and cadmium exposure. Mar. Biol. 127, 45–54.
    Google ScholarLocate open access versionFindings
  • Rijstenbil, J.W., Sandee, A., Van Drie, J., Wijnholds, J.A., 1994. Interaction of toxic trace metals and mechanisms of detoxification in the planktonic diatoms Ditylum brightwelli and Thalassiosira pseudonana. FEMS Microbiol. Rev. 14, 387–396.
    Google ScholarLocate open access versionFindings
  • Robinson, N.J., 1989a. Metal-binding polypeptides in plants. In: Shaw, A.J. (Ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press Inc., Boca Raton, FL, pp. 195–214.
    Google ScholarLocate open access versionFindings
  • Robinson, N.J., 1989b. Algal metallothioneins: secondary metabolites and proteins. J. Appl. Phycol. 1, 5–18.
    Google ScholarLocate open access versionFindings
  • Rose, P.D., Boshoff, G.A., van Hille, R.P., Wallace, L.C.M., Dunn, K.M., Duncan, J.R., 1998. An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters. Biodegradation 9, 247–257.
    Google ScholarLocate open access versionFindings
  • Rubinelli, P., Siripornadulsil, S., Gao-Rubinelli, F., Sayre, R.T., 2002. Cadmium- and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for h43 protein function in iron assimilation. Planta 215, 1–13.
    Google ScholarLocate open access versionFindings
  • Salt, D.E., Rauser, W.E., 1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107, 1293– 1301.
    Google ScholarLocate open access versionFindings
  • Satoh, M., Karaki, E., Kakehashi, M., Okazaki, E., Gotoh, T., Oyama, Y., 1999. Heavy-metal induced changes in nonproteinaceous thiol levels and heavy-metal binding peptide in Tetraselmis tetrathele (Prasinophyceae). J. Phycol. 35, 989–994.
    Google ScholarLocate open access versionFindings
  • Scarano, G., Morelli, E., 2003. Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci. 165, 803–810.
    Google ScholarLocate open access versionFindings
  • Schafer, H.J., Haag-Kerwer, A., Rausch, T., 1988. cDNA cloning and expression analysis of gene encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial c-glutamylcysteine synthetase isoform. Plant Mol. Biol. 37, 87–97.
    Google ScholarLocate open access versionFindings
  • Schafer, H.J., Greiner, S., Rausch, T., Haag-Kerwer, A., 1997. In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amount for gamma-glutamylcysteine synthetase (cECS) and metallothionein (MT2). FEES Lett. 404, 216–220.
    Google ScholarLocate open access versionFindings
  • Semple, K.T., Cain, R.B., Schmidt, S., 1999. Biodegradation of aromatic compounds by microalgae. FEMS Microb. Lett. 170, 291–300.
    Google ScholarLocate open access versionFindings
  • Shrager, J., Hauser, C., Chang, C.W., Harris, E.H., Davies, J., McDermott, J., Tamse, R., Zhang, Z.D., Grossman, A.R., 2003. Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol. 131, 401–408.
    Google ScholarLocate open access versionFindings
  • Siripornadulsil, S., Traina, S., Verma, D.P.S., Sayre, R.T., 2002. Molecular Mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14, 2837–2847.
    Google ScholarLocate open access versionFindings
  • Soldo, D., Hari, R., Sigg, L., Behra, R., 2005. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat. Toxicol. 71, 307–317.
    Google ScholarLocate open access versionFindings
  • Steffens, J.C., 1990. The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 553–575.
    Google ScholarLocate open access versionFindings
  • Stokes, P.M., Maler, T., Riordan, J.R., 1977. A low molecular weight copper-binding protein in a copper tolerant strain Scenedesmus acutiformis. In: Hemphil, D.D. (Ed.), Trace Substances in Environmental Health. University of Missouri Press, Columbia, pp. 146–154.
    Google ScholarLocate open access versionFindings
  • Strasdeit, H., Duhme, A.K., Kneer, R., Zenk, M.H., Hermes, C., Nolting, H.F., 1991. Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy. J. Chem. Soc. Chem. Commun. 16, 1129–1130.
    Google ScholarLocate open access versionFindings
  • Sunda, W.G., Huntsman, S.A., 1998. Interactions among Cu2+, Zn2+ and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga Chlamydomonas. Limnol. Oceanogr. 43, 1055–1064.
    Google ScholarLocate open access versionFindings
  • Terry, P.A., Stone, W., 2002. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 47, 249– 255.
    Google ScholarLocate open access versionFindings
  • Thiele, D.J., 1992. Metal-regulated transcription in eukaryotes. Nuc. Acids Res. 20, 1183–1191.
    Google ScholarLocate open access versionFindings
  • Torres, E., Cid, A., Fidalgo, P., Herrero, C., Abalde, J., 1997. Long-chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin. Aquat. Toxicol. 39, 231–246.
    Google ScholarLocate open access versionFindings
  • Torres, E., Cid, A., Herrero, C., Abalde, J., 1998. Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Biores. Technol. 63, 213– 220.
    Google ScholarLocate open access versionFindings
  • Torricelli, E., Gorbi, G., Pawlik-Skowronska, B., di Toppi, L.S., Corradi, M.G., 2004. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae). Aquat. Toxicol. 68, 315–323.
    Google ScholarLocate open access versionFindings
  • Toumi, A., Nejmeddine, A., El Hamouri, B., 2000. Heavy metal removal in waste stabilization ponds and high rate ponds. Water Sci. Technol. 42, 17–21.
    Google ScholarLocate open access versionFindings
  • Travieso, L., Canizares, R.O., Borja, R., Benitez, F., Domınguez, A.R., Dupeyron, R., Valiente, V., 1999. Heavy metal removal by microalgae. Bull. Environ. Contam. Toxicol. 62, 144–151.
    Google ScholarLocate open access versionFindings
  • Tripathi, B.N., Mehta, S.K., Amar, A., Gaur, J.P., 2006. Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 62, 538–544.
    Google ScholarLocate open access versionFindings
  • Tsuji, N., Hirayanagi, N., Okada, M., Miyasaka, H., Hirata, K., Zenk, M.H., Miyamoto, K., 2002. Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem. Bioph. Res. Co. 293, 653–659.
    Google ScholarLocate open access versionFindings
  • Vande, W.J.G., Ow, D.W., 1999. A fission yeast gene for mitochondrial sulfide oxidation. J. Biol. Chem. 274, 13250–13257.
    Google ScholarLocate open access versionFindings
  • Vande, W.J.G., Ow, D.W., 2001. Accumulation of metal-binding peptides in fission yeast requires hmt2+. Mol. Microbiol. 42, 29–36.
    Google ScholarLocate open access versionFindings
  • Vatamaniuk, O.K., Mari, S., Lu, Y.P., Rea, P.A., 1999. AtPCSl, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstruction. Proc. Natl. Acad. Sci. 96, 7110–7115.
    Google ScholarLocate open access versionFindings
  • Vatamaniuk, O.K., Mari, S., Lu, Y.P., Rea, P.A., 2000. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J. Biol. Chem. 275, 31451–31459.
    Google ScholarLocate open access versionFindings
  • Vatamaniuk, O.K., Mari, S., Lang, A., Chalasani, S., Demkiv, L.O., Rea, P.A., 2004. Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with c-glutamylcysteine during catalysis. J. Biol. Chem. 279, 22449–22460.
    Google ScholarLocate open access versionFindings
  • White, C., Sayer, J.A., Gadd, G.M., 1997. Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol. Rev. 20, 503–516.
    Google ScholarLocate open access versionFindings
  • Wu, J.T., Hsieh, M.T., Kow, L.C., 1998. Role of proline accumulation in response to toxic copper in Chlorella sp. (Chlorophyceae) cells. J. Phycol. 34, 113–117.
    Google ScholarLocate open access versionFindings
  • Xiang, C.B., Werner, B.L., Christensen, E.M., Oliver, D.J., 2001. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 126, 564–574.
    Google ScholarLocate open access versionFindings
  • Zhang, X., Luo, S., Yang, Q., Zhang, H., Li, J., 1997. Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus. J. Appl. Phycol. 9, 65–71.
    Google ScholarLocate open access versionFindings
  • Zhu, Y.L., Pilon-Smits, E.A.H., Jouanin, L., Terry, N., 1999a. Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. A 119, 73–79.
    Google ScholarLocate open access versionFindings
  • Zhu, Y.L., Pilon-Smits, E.A.H., Tarun, A.S., Weber, S.U., Jouanin, L., Terry, N., 1999b. Cadmium tolerance and accumulation in indian mustard is enhanced by overexpressing c-glutamylcysteine synthetase. Plant Physiol. B 121, 1169–1177.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
小科