Dual representation of spatial rational Pythagorean-hodograph curves

Computer Aided Geometric Design(2014)

引用 11|浏览6
摘要
In this paper, the dual representation of spatial parametric curves and its properties are studied. In particular, rational curves have a polynomial dual representation, which turns out to be both theoretically and computationally appropriate to tackle the main goal of the paper: spatial rational Pythagorean-hodograph curves (PH curves). The dual representation of a rational PH curve is generated here by a quaternion polynomial which defines the Euler-Rodrigues frame of a curve. Conditions which imply low degree dual form representation are considered in detail. In particular, a linear quaternion polynomial leads to cubic or reparameterized cubic polynomial PH curves. A quadratic quaternion polynomial generates a wider class of rational PH curves, and perhaps the most useful is the ten-parameter family of cubic rational PH curves, determined here in the closed form.
更多
查看译文
关键词
cubic rational ph curve,quaternion polynomial,linear quaternion polynomial,dual representation,rational ph curve,ph curve,rational curve,spatial rational pythagorean-hodograph curve,polynomial dual representation,reparameterized cubic polynomial,quadratic quaternion polynomial,frenet frame,quaternions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn