AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
Substantial progress has been made in recent years by research groups around the world in designing and synthesising polymers that are able to regain the physical properties of the pristine materials after physical damage

Healable polymeric materials: a tutorial review.

CHEMICAL SOCIETY REVIEWS, no. 6 (2010): 1973-1985

被引用286|浏览5
WOS
下载 PDF 全文
引用
微博一下

摘要

Given the extensive use of polymers in the modern age with applications ranging from aerospace components to microcircuitry, the ability to regain the mechanical and physical characteristics of complex pristine materials after damage is an attractive proposition. This tutorial review focusses upon the key chemical concepts that have been ...更多

代码

数据

0
简介
  • Polymeric materials underpin almost every aspect of everyday life with, for example, electronic,[1,2] automotive,[2,3,4] coating,[5] and sports technologies[2,6,7] employing a very wide range of

    Stefano Burattini graduated in industrial chemistry at the

    University of Rome ‘‘La Sapienza’’ in 2004.
  • During his time in London he worked on a range of projects, including dendrimer synthesis, investigations into new living polymerisations and produced a family of high loading supports for solid phase synthesis
  • He moved to the University of Reading in 2007 where he has worked primarily in the field of supramolecular polymer chemistry
重点内容
  • Polymeric materials underpin almost every aspect of everyday life with, for example, electronic,[1,2] automotive,[2,3,4] coating,[5] and sports technologies[2,6,7] employing a very wide range of

    Stefano Burattini graduated in industrial chemistry at the

    University of Rome ‘‘La Sapienza’’ in 2004
  • Substantial progress has been made in recent years by research groups around the world in designing and synthesising polymers that are able to regain the physical properties of the pristine materials after physical damage
  • Of breaking and healing cycles which the material can sustain without loss of properties, and (iii) the extent to which the material may be rehealed—taking account of all relevant physical parameters such as tensile modulus, elongation to break, fatigue-resistance, colour and transparency
  • In addition there is the practical requirement that, the polymer system should be inexpensive and readily processable to enable it to move from being a purely research material to one with a significant impact on everyday life. With such a diverse range of parameters to be optimised it is clear that many formidable challenges remain, but that, as a consequence, tremendous potential exists for breakthroughs in the design and development of healable polymeric materials over the coming years
结果
  • The healing efficiencies of materials developed using this approach were subsequently improved to 87%, by incorporating bis-dienophile in the system to produce crosslinked polymer (Scheme 4).[23].
结论
  • Substantial progress has been made in recent years by research groups around the world in designing and synthesising polymers that are able to regain the physical properties of the pristine materials after physical damage.
  • In addition there is the practical requirement that, the polymer system should be inexpensive and readily processable to enable it to move from being a purely research material to one with a significant impact on everyday life
  • With such a diverse range of parameters to be optimised it is clear that many formidable challenges remain, but that, as a consequence, tremendous potential exists for breakthroughs in the design and development of healable polymeric materials over the coming years
总结
  • Introduction:

    Polymeric materials underpin almost every aspect of everyday life with, for example, electronic,[1,2] automotive,[2,3,4] coating,[5] and sports technologies[2,6,7] employing a very wide range of

    Stefano Burattini graduated in industrial chemistry at the

    University of Rome ‘‘La Sapienza’’ in 2004.
  • During his time in London he worked on a range of projects, including dendrimer synthesis, investigations into new living polymerisations and produced a family of high loading supports for solid phase synthesis
  • He moved to the University of Reading in 2007 where he has worked primarily in the field of supramolecular polymer chemistry
  • Results:

    The healing efficiencies of materials developed using this approach were subsequently improved to 87%, by incorporating bis-dienophile in the system to produce crosslinked polymer (Scheme 4).[23].
  • Conclusion:

    Substantial progress has been made in recent years by research groups around the world in designing and synthesising polymers that are able to regain the physical properties of the pristine materials after physical damage.
  • In addition there is the practical requirement that, the polymer system should be inexpensive and readily processable to enable it to move from being a purely research material to one with a significant impact on everyday life
  • With such a diverse range of parameters to be optimised it is clear that many formidable challenges remain, but that, as a consequence, tremendous potential exists for breakthroughs in the design and development of healable polymeric materials over the coming years
基金
  • We thank EPSRC for grants in support of our work in this field (EP/D07434711, EP/G026203/1 and DT/F007124/1)
引用论文
  • 1 K. Cousins, Polymers in Electronics, Smithers Rapra Technology Ltd, Shawbury, 2006.
    Google ScholarFindings
  • 2 M. Chanda and S. K. Roy, Plastics Technology Handbook, Marcel Dekker, New York, 1998.
    Google ScholarFindings
  • 3 M. Jacoby, Chem. Eng. News, 2003, 81, 28–34.
    Google ScholarFindings
  • 4 Chem. Brit., 1999, 10, 24–26.
    Google ScholarFindings
  • 5 Z. W. Wicks, F. N. Jones, S. P. Pappas and D. A. Wicks, Organic Coatings, John Wiley & Sons, Hoboken, New Jersey, 2007.
    Google ScholarFindings
  • 6 M. Jacoby, Chem. Eng. News, 2002, 80, 29–32.
    Google ScholarLocate open access versionFindings
  • 7 R. Butler, Chem. Ind., 2003, (19), 19–20.
    Google ScholarLocate open access versionFindings
  • 8 T. Osswald and G. Menges, Materials Science of Polymers for Engineers, Hanser Publishers, Munich, 2003.
    Google ScholarFindings
  • 9 S. D. Bergman and F. Wudl, J. Mater. Chem., 2008, 18, 41–62.
    Google ScholarLocate open access versionFindings
  • 10 C. Dry and W. McMillan, Smart Mater. Struct., 1997, 6, 35–39.
    Google ScholarLocate open access versionFindings
  • 11 D. Y. Wu, S. Meure and D. Solomon, Prog. Polym. Sci., 2008, 33, 479–522.
    Google ScholarLocate open access versionFindings
  • 12 R. P. Wool, Soft Matter, 2008, 4, 400–418.
    Google ScholarFindings
  • 13 J. Wietor and R. P. Sijbesma, Angew. Chem., Int. Ed., 2008, 47, 8161–8163.
    Google ScholarLocate open access versionFindings
  • 14 S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown and S. Viswanathan, Nature, 2001, 409, 794–797.
    Google ScholarLocate open access versionFindings
  • 15 S. H. Cho, H. M. Anderson, S. R. White, N. R. Sottos and P. V. Braun, Adv. Mater., 2006, 18, 997–1000.
    Google ScholarLocate open access versionFindings
  • 16 K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore and R. S. White, Nat. Mater., 2007, 6, 581–586.
    Google ScholarLocate open access versionFindings
  • 17 J. W. C. Pang and I. P. Bond, Composites, Part A, 2005, 36, 183–188.
    Google ScholarFindings
  • 18 J. W. C. Pang and I. P. Bond, Compos. Sci. Technol., 2005, 65, 1791–1799.
    Google ScholarLocate open access versionFindings
  • 19 A. Piermattei, S. Karthikeyan and R. P. Sijbesma, Nat. Chem., 2009, 1, 133–137.
    Google ScholarLocate open access versionFindings
  • 20 M. Stevens and A. Jenkins, J. Polym. Sci., Chem. Ed., 1979, 17, 3675–3685.
    Google ScholarLocate open access versionFindings
  • 21 X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran and F. Wudl, Science, 2002, 295, 1698–1702.
    Google ScholarLocate open access versionFindings
  • 22 G. W. Goodall and W. Hayes, Chem. Soc. Rev., 2006, 35, 280–312.
    Google ScholarLocate open access versionFindings
  • 23 X. Chen, F. Wudl, A. K. Mal, H. Shen and S. R. Nutt, Macromolecules, 2003, 36, 1802–1807.
    Google ScholarFindings
  • 24 Y. L. Liu and C. Y. Hsieh, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 905–913.
    Google ScholarLocate open access versionFindings
  • 25 Y. L. Liu and Y. W. Chen, Macromol. Chem. Phys., 2007, 208, 224–232.
    Google ScholarLocate open access versionFindings
  • 26 Y. L. Liu, C. Y. Hsieh and Y. W. Chen, Polymer, 2006, 47, 2581–2586.
    Google ScholarFindings
  • 27 Y. Zhang, A. A. Broekhuis and F. Picchioni, Macromolecules, 2009, 42, 1906–1912.
    Google ScholarFindings
  • 28 C. M. Chung, Y. S. Roh, S. Y. Cho and J. G. Kim, Chem. Mater., 2004, 16, 3982–3984.
    Google ScholarLocate open access versionFindings
  • 29 J. McMurry, Organic Chemistry, Brooks/Cole Publishing Company, Belmont, California, 1988.
    Google ScholarFindings
  • 30 T. F. Scott, A. D. Schneider, W. D. Cook and C. N. Bowman, Science, 2005, 308, 1615–1617.
    Google ScholarFindings
  • 31 B. Ghosh and M. W. Urban, Science, 2009, 323, 1458–1458.
    Google ScholarFindings
  • 32 P. J. De Gennes, J. Chem. Phys., 1971, 55, 572–579.
    Google ScholarLocate open access versionFindings
  • 33 K. Jud, H. H. Kausch and J. G. Williams, J. Mater. Sci., 1981, 16, 204–210.
    Google ScholarLocate open access versionFindings
  • 34 Y. H. Kim and R. P. Wool, Macromolecules, 1983, 16, 1115–1120.
    Google ScholarFindings
  • 35 Y. M. Boiko, G. Guerin, V. A. Marikhin and R. E. Prud’homme, Polymer, 2001, 42, 8695–8702.
    Google ScholarFindings
  • 36 L. Brunsveld, B. J. B. Folmer, R. P. Sijbesma and E. W. Meijer, Chem. Rev., 2001, 101, 4071–4097.
    Google ScholarLocate open access versionFindings
  • 37 A. Ciferri, Macromol. Rapid Commun., 2002, 23, 511–529.
    Google ScholarLocate open access versionFindings
  • 38 L. Perez-Garcia and D. B. Amabilino, Chem. Soc. Rev., 2007, 36, 941–967.
    Google ScholarLocate open access versionFindings
  • 39 S. Sivakova and S. J. Rowan, Chem. Soc. Rev., 2005, 34, 9–21.
    Google ScholarLocate open access versionFindings
  • 40 F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H. J. Schenning, Chem. Rev., 2005, 105, 1491–1546.
    Google ScholarLocate open access versionFindings
  • 41 G. F. Swiegers and T. J. Malefetse, Chem. Rev., 2000, 100, 3483–3537.
    Google ScholarLocate open access versionFindings
  • 42 G. M. L. Hoorne-van-Gemert, H. M. Janssen, E. W. Meijer and A. W. Bosman, Int. Pat. Appl. WO2008/063057, 2008.
    Google ScholarLocate open access versionFindings
  • S. J. Rowan, J. Am. Chem. Soc., 2005, 127, 18202–18211.
    Google ScholarLocate open access versionFindings
  • 44 F. R. Kersey, D. M. Loveless and S. L. Craig, J. R. Soc. Interface, 2007, 4, 373–380.
    Google ScholarLocate open access versionFindings
  • 45 S. J. Kalista Jr. and T. C. Ward, J. R. Soc. Interface, 2007, 4, 405–411.
    Google ScholarLocate open access versionFindings
  • Struct., 2007, 14, 391–397.
    Google ScholarFindings
  • 47 Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, K. Okuro, K. Kinbara and T. Aida, Nature, 2010, 463, 339–343.
    Google ScholarLocate open access versionFindings
  • 48 P. Cordier, F. Tournilhac, C. Soulie -Ziakovic and L. Leibler, Nature, 2008, 451, 977–980.
    Google ScholarLocate open access versionFindings
  • L. Leibler, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 7925–7936.
    Google ScholarLocate open access versionFindings
  • 50 S. Burattini, H. M. Colquhoun, B. W. Greenland and W. Hayes, Faraday Discuss., 2009, 143, 251–264.
    Google ScholarLocate open access versionFindings
  • 51 R. S. Lokey and B. L. Iverson, Nature, 1995, 375, 303–305.
    Google ScholarFindings
  • 52 R. S. Lokey, Y. Kwok, V. Guelev, C. J. Pursell, L. H. Hurley and B. L. Iverson, J. Am. Chem. Soc., 1997, 119, 7202–7210.
    Google ScholarLocate open access versionFindings
  • 53 J. Q. Nguyen and B. L. Iverson, J. Am. Chem. Soc., 1999, 121, 2639–2640.
    Google ScholarLocate open access versionFindings
  • 54 B. W. Greenland, S. Burattini, W. Hayes and H. M. Colquhoun, Tetrahedron, 2008, 64, 8346–8354.
    Google ScholarFindings
  • 55 S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay and S. J. Rowan, Chem. Commun., 2009, 6717–6719.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
小科