AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
This section is necessarily restricted to some of the most widely used methods based on chemical reactions in solution – wet chemistry – that yield metal nanoparticle colloids

Surface-enhanced Raman scattering on colloidal nanostructures

Advances in Colloid and Interface Science, no. 1 (2005): 45-61

被引用332|浏览7
EI WOS
下载 PDF 全文
引用
微博一下

摘要

Surface-enhanced Raman scattering combines extremely high sensitivity, due to enhanced Raman cross-sections comparable or even better than fluorescence, with the observation of vibrational spectra of adsorbed species, providing one of the most incisive analytical methods for chemical and biochemical detection and analysis. SERS spectra ar...更多

代码

数据

0
简介
  • Just a cursory glance of the literature will show that the most popular method to prepare nanospheres of silver or gold, for their use as SERS enhancers, are the reduction of the metal cations from their salts.
  • For silver those would be AgNO3 or Ag2SO4, and in the case of gold, HAuCl4 or KAuCl4, with sodium citrate or sodium borohydride.
  • The yellowish colloidal suspension has a surface plasmon absorption maximum routinely measured at 391 nm (Fig. 2)
重点内容
  • As well they have become central to single-particle, single-molecule Raman spectroscopy with the achievement of the single molecule detection (SMD) [7,8]. Is it important to distinguish two types of SERS signals when using colloidal nanoparticles. (a) SERS spectra that are the product of an ‘‘average SERS’’ enhancement, the product of SERS from an ensemble of colloidal particles and aggregates and characterized by a stable average spectrum with welldefined frequency and bandwidth. (b) SERS spectra obtained from a single particle or single aggregate of particles that encompasses ‘‘hot spot’’, a spatial region where extremely high enhancement factors are observed which permit single molecule detection
  • There are several reviews of SERS with emphasis on metal colloids, in particular, the ultra-high enhancement SERS and SMD using colloids is discussed by Kneipp et al [9], while the applications of metal colloids to provide average SERS enhancements for the detection of biological molecules has been reviewed by Dou and Ozaki [10]
  • This section is necessarily restricted to some of the most widely used methods based on chemical reactions in solution – wet chemistry – that yield metal nanoparticle colloids
  • Within the limits of wet chemistry metal colloids can be prepared by a variety of different procedures: chemical reduction, laser ablation and photoreduction are those most frequently employed
  • We have reported films of gold nanospheres embedded in the biopolymer chitosan [56], acting as a non-active organic matrix (Fig. 1e), and in a parallel development, silver nanowires in a dendrimer matrix were transferred to a glass slide support using the layer by layer technique [57] (Fig. 1f)
结果
  • When the Au fraction is increased to 3% actual Au-coated Ag particles are obtained.
结论
  • Vibrationsl Spectrosccopy (Raman and infrared) has available a vast body of spectral data, collected in databases as the result of detailed studies of gases, liquids and solids.
  • This represents the great advantages of vibrational spectroscopy for identification, chemical analysis and a realm of applications.
  • SERS, as part of the surface-enhanced spectroscopy field, is presently fueling the field of nanostructure fabrication and characterization, with inroads into the world of chemical analysis and biomedical applications
总结
  • Introduction:

    Just a cursory glance of the literature will show that the most popular method to prepare nanospheres of silver or gold, for their use as SERS enhancers, are the reduction of the metal cations from their salts.
  • For silver those would be AgNO3 or Ag2SO4, and in the case of gold, HAuCl4 or KAuCl4, with sodium citrate or sodium borohydride.
  • The yellowish colloidal suspension has a surface plasmon absorption maximum routinely measured at 391 nm (Fig. 2)
  • Results:

    When the Au fraction is increased to 3% actual Au-coated Ag particles are obtained.
  • Conclusion:

    Vibrationsl Spectrosccopy (Raman and infrared) has available a vast body of spectral data, collected in databases as the result of detailed studies of gases, liquids and solids.
  • This represents the great advantages of vibrational spectroscopy for identification, chemical analysis and a realm of applications.
  • SERS, as part of the surface-enhanced spectroscopy field, is presently fueling the field of nanostructure fabrication and characterization, with inroads into the world of chemical analysis and biomedical applications
基金
  • When the Au fraction is increased to 3% actual Au-coated Ag particles are obtained
引用论文
  • Fleischmann M, Hendra PJ, McQuillan AJ. Chem Phys Lett 1974;26:163.
    Google ScholarLocate open access versionFindings
  • Albrecht MG, Creighton JA. J Am Chem Soc 1977;99:5215.
    Google ScholarLocate open access versionFindings
  • Jeanmaire DL, VanDuyne RP. J Electroanal Chem 1977;84:1.
    Google ScholarLocate open access versionFindings
  • Creighton JA, Blatchford CG, Albretch MG. J Chem Soc Faraday Trans II 1979;75:790.
    Google ScholarLocate open access versionFindings
  • Wang DS, Chew H, Kerker M. Appl Opt 1980;19:2256.
    Google ScholarLocate open access versionFindings
  • Kerker M, Wang DS, Chew H. Appl Opt 1980;19:4159.
    Google ScholarLocate open access versionFindings
  • Nie S, Emory SR. Science 1997;275:1102.
    Google ScholarLocate open access versionFindings
  • Kneipp K, Wang Y, Kneip H, Perelman LT, Itzkan I, Dasari RR, et al. Phys Rev Lett 1997;78:1667.
    Google ScholarLocate open access versionFindings
  • Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Chem Rev (Washington, DC) 1999;99:2957.
    Google ScholarLocate open access versionFindings
  • Dou X-M, Ozaki Y. Rev Anal Chem 1999;18:285.
    Google ScholarLocate open access versionFindings
  • Pettinger B, Picardi G, Schuster R, Ertl G. Single Mol 2002;3:285.
    Google ScholarLocate open access versionFindings
  • Kelly KL, Coronado E, Zhao LL, Schatz GC. J Phys Chem B
    Google ScholarLocate open access versionFindings
  • Mulvaney P. Langmuir 1996;12:788.
    Google ScholarLocate open access versionFindings
  • El-Sayed MA. Acc Chem Res 2004;37:326.
    Google ScholarLocate open access versionFindings
  • Kim K, Lee SJ, Kim KL. J Phys Chem B 2004;108:16208.
    Google ScholarLocate open access versionFindings
  • Faraday M. Philos Trans R Soc Lond B Biol Sci 1857;147:145.
    Google ScholarLocate open access versionFindings
  • Garcia-Rodriguez FJ, Gonzalez-Hernandez J, Perez-Robles F, Vorobiev YV, Manzano-Ramirez A, Jimenez-Sandoval S, et al. J Raman Spectrosc 1998;29:763.
    Google ScholarLocate open access versionFindings
  • Coyle CM, Chumanov G, Jagodzinski PW. J Raman Spectrosc 1998;29:757.
    Google ScholarLocate open access versionFindings
  • Sanchez-Cortes S, Garcia-Ramos JV. Langmuir 2000;16:764.
    Google ScholarLocate open access versionFindings
  • Flynn NT, Gewirth AA. J Raman Spectrosc 2002;33:243.
    Google ScholarLocate open access versionFindings
  • Lu L, Sun G, Zhang H, Wang H, Xi S, Hu J, et al. J Mater Chem 2004;14:1005.
    Google ScholarLocate open access versionFindings
  • Takenaka T, Eda K. J Colloid Interface Sci 1985;105:342.
    Google ScholarLocate open access versionFindings
  • Cao LT, Diao L, Zhu P, Liu T. Chem Mater 2004;16:3239.
    Google ScholarLocate open access versionFindings
  • Feilchenfeld H, Luckier M, Efron L, Willner B. Surf Sci 1992;268:127.
    Google ScholarLocate open access versionFindings
  • Srnova I, Vlckova B, Baumruk V. J Mol Struct 1997;410 – 411:201.
    Google ScholarLocate open access versionFindings
  • Park S, Yang P, Corredor P, Weaver MJ. J Am Chem Soc 2002;124:2428.
    Google ScholarLocate open access versionFindings
  • Sanchez-Cortes S, Garcia-Ramos JV. J Mol Struct 1992;274:33.
    Google ScholarLocate open access versionFindings
  • Camafeita LE, Sanchez-Cortes S, Garcia-Ramos JV. J Raman Spectrosc 1995;26:149.
    Google ScholarLocate open access versionFindings
  • Lee M, Meisel D. J Phys Chem 1982;86:3391.
    Google ScholarLocate open access versionFindings
  • Sanchez-Cortes S, Garcia-Ramos JV. J Raman Spectrosc 1992;23:61.
    Google ScholarLocate open access versionFindings
  • Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C. Chem Commun 1995;16:1655.
    Google ScholarLocate open access versionFindings
  • Heath JR, Knobler CM, Leff DV. J Phys Chem B 1997;101:189.
    Google ScholarLocate open access versionFindings
  • Alvarez-Puebla RA, Arceo E, Goulet PJG, Garrido JJ, Aroca RF. J Phys Chem B 2005;109:3787.
    Google ScholarLocate open access versionFindings
  • Lee PC, Meisel D. Chem Phys Lett 1983;99:262.
    Google ScholarLocate open access versionFindings
  • Goia DV, Matijevilmage E. Colloids Surf A Physicochem Eng Asp 1999;146:139.
    Google ScholarFindings
  • Si M, Wu R, Zhang P. Huaxue Wuli Xuebao 2001;14:465.
    Google ScholarLocate open access versionFindings
  • Sanchez-Cortes S, Garcia-Ramos JV. J Raman Spectrosc 1998;29: 365.
    Google ScholarLocate open access versionFindings
  • Nickel U, Mansyreff K, Schneider S. J Raman Spectrosc 2004;35: 101.
    Google ScholarLocate open access versionFindings
  • Leopold N, Lendl B. J Phys Chem B 2003;107:5723.
    Google ScholarLocate open access versionFindings
  • Moskovits M. Rev Mod Phys 1985;57:783.
    Google ScholarLocate open access versionFindings
  • Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G. Langmuir 2000;16:9722.
    Google ScholarLocate open access versionFindings
  • Jana NR, Gearheart L, Murphy CJ. J Phys Chem B 2001;105:4065.
    Google ScholarLocate open access versionFindings
  • Nikoobakht B, El-Sayed MA. J Phys Chem A 2003;107:3372.
    Google ScholarLocate open access versionFindings
  • Sun YG, Gates B, Mayers B, Xia YN. Nano Lett 2002;2:165.
    Google ScholarLocate open access versionFindings
  • Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, et al. Nano Lett 2003;3:1229.
    Google ScholarLocate open access versionFindings
  • Silvert PY, Herrera-Urbina R, Tekaia-Elhsissen K. J Mater Chem 1997:293. [47] dos Santos Jr DS, Alvarez-Puebla RA, Oliveira Jr ON, Aroca RF. J Mater Chem 2005;15:3045.
    Google ScholarLocate open access versionFindings
  • [48] Etchegoin P, Cohen LF, Hartigan H, Brown RJC, Milton MJT, Gallop JC. J Chem Phys 2003;119:5281.
    Google ScholarLocate open access versionFindings
  • [49] Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G. J Colloid Interface Sci 1994;167:428.
    Google ScholarLocate open access versionFindings
  • [50] Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G, Tinti A. J Colloid Interface Sci 1995;175:358.
    Google ScholarLocate open access versionFindings
  • [51] Kim MS, Kang JS, Park SB, Lee MS. Bull Korean Chem Soc 2003;24:633.
    Google ScholarLocate open access versionFindings
  • [52] Sanchez-Cortes S, Garcia-Ramos JV. Surf Sci 2001;473:133.
    Google ScholarLocate open access versionFindings
  • [53] Munro CH, Smith WE, Armstrong DR, White PC. J Phys Chem
    Google ScholarLocate open access versionFindings
  • [54] Shirtcliffe N, Nickel U, Schneider S. J Colloid Interface Sci
    Google ScholarLocate open access versionFindings
  • [55] Van Hyning DL, Klemperer WG, Zukoski CF. Langmuir 2001; 17:3120. [56] dos Santos Jr DS, Goulet PJG, Pieczonka NPW, Oliveira Jr ON, Aroca RF. Langmuir 2004;20:10273.
    Google ScholarLocate open access versionFindings
  • [57] Aroca RF, Goulet PJG, dos Santos Jr DS, Alvarez-Puebla RA, Oliveira Jr ON. Anal Chem 2005;77:378.
    Google ScholarLocate open access versionFindings
  • [58] Wang Z, Pan S, Krauss TD, Du H, Rothberg LJ. Proc Natl Acad Sci U S A 2003;100:8638 – 43.
    Google ScholarLocate open access versionFindings
  • [59] Sloufova-Srnova I, Vlckova B. Nano Lett 2002;2:121.
    Google ScholarLocate open access versionFindings
  • [60] Zhang J, Li X, Liu K, Cui Z, Zhang G, Zhao B, et al. J Colloid Interface Sci 2002;255:115.
    Google ScholarLocate open access versionFindings
  • [61] Li X, Xu W, Zhang J, Jia H, Yang B, Zhao B, et al. Langmuir 2004; 20:1298.
    Google ScholarLocate open access versionFindings
  • [62] Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, et al. Science 1995;267:1629.
    Google ScholarLocate open access versionFindings
  • [63] Constantino CJL, Lemma T, Antunes PA, Aroca R. Anal Chem
    Google ScholarLocate open access versionFindings
  • [64] Roy D, Fendler J. Adv Mater 2004;16:479.
    Google ScholarLocate open access versionFindings
  • [65] Wang ZL. Characterization of nanophase materials. Weinheim’ Wiley-VCH Verlag GmbH; 2001.
    Google ScholarFindings
  • [66] Chung Y-W. Practical Guide to surface science and spectroscopy. San Diego’ Academic Press; 2001.
    Google ScholarFindings
  • [67] Hudson JB. Surface science: an introduction. Boston’ Butterworth- Heinemann; 1992.
    Google ScholarFindings
  • [68] Lecomte S, Matejka P, Baron MH. Langmuir 1998;14:4373.
    Google ScholarLocate open access versionFindings
  • [69] Faulds K, Littleford RE, Graham D, Dent G, Smith WE. Anal Chem
    Google ScholarLocate open access versionFindings
  • [70] Clark RJH, Hester RE. Spectroscopy of inorganic-based materials. Chichester’ John Wiley & Sons; 1987.
    Google ScholarFindings
  • [71] Clark RJH, Hester RE. Spectroscopy for Surface Sciencce. Chichester’ John Wiley & Sons Ltd.; 1998.
    Google ScholarFindings
  • [72] Aroca RF, Ross D, Domingo C. Appl Spectrosc 2004;58:324.
    Google ScholarLocate open access versionFindings
  • [73] Klar T, Perner M, Grosse S, von Plessen G, Spirkl W, Feldmann J. Phys Rev Lett 1998;80:4249.
    Google ScholarLocate open access versionFindings
  • [74] Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York’ Wiley Interscience; 1983.
    Google ScholarFindings
  • [75] Feldheim DL, Foss CA. New York: Marcel Dekker, Inc.; 2002.
    Google ScholarFindings
  • [76] Markel VA, Shalaev VM, Stechel EB, Kim W, Armstrong RL. Phys Rev B 1996;53:2425.
    Google ScholarLocate open access versionFindings
  • [77] Nithipatikom K, McCoy MJ, Hawi SR, Nakamoto K, Adar F, Campbell WB. Anal Biochem 2003;322:198.
    Google ScholarLocate open access versionFindings
  • [78] Cao YC, Jin R, Mirkin CA. Science 2002;297:1536.
    Google ScholarLocate open access versionFindings
  • [79] Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ. Proc Natl Acad Sci U S A 2002;99:966.
    Google ScholarLocate open access versionFindings
  • [80] Faulds K, Smith WE, Graham D, Lacey RJ. Analyst 2002;127:282.
    Google ScholarLocate open access versionFindings
  • [81] Alvarez-Puebla RA, dos Santos Jr DS, Aroca RF. Analyst 2004; 129:1251.
    Google ScholarLocate open access versionFindings
  • [82] McLaughlin C, MacMillan D, McCardle C, Smith WE. Anal Chem
    Google ScholarLocate open access versionFindings
  • [83] Tripathi GNR. J Am Chem Soc 2003;125:1178.
    Google ScholarLocate open access versionFindings
  • [84] Aroca RF, Clavijo RE, Halls MD, Schlegel HB. J Phys Chem A
    Google ScholarLocate open access versionFindings
  • [85] Cardini G, Muniz-Miranda M. J Phys Chem B 2002;106:6875.
    Google ScholarLocate open access versionFindings
  • [86] Kneipp K, Roth E, Engert C, Kiefer W. Chem Phys Lett 1993;207:450.
    Google ScholarLocate open access versionFindings
  • [87] Ren B, Lin XF, Yang ZL, Liu GK, Aroca RF, Mao BW, et al. J Am Chem Soc 2003;125:9598.
    Google ScholarLocate open access versionFindings
  • [88] Panicker CY, Varghese HT, John A, Philip D, Istvan K, Keresztury G. Spectrochim Acta Part A Mol Biomol Spectrosc 2002;58A:281.
    Google ScholarLocate open access versionFindings
  • [89] Sanchez-Cortes S, Garcia-Ramos JV. Appl Spectrosc 2000;54:230.
    Google ScholarLocate open access versionFindings
  • [90] Joy VT, Srinivasan TKK. J Phys Chem B 1999;103:6509.
    Google ScholarLocate open access versionFindings
  • [91] Joy VT, George L, Srinivasan TKK. Chem Phys Lett 1999;302: 517.
    Google ScholarLocate open access versionFindings
  • [92] Leopold N, Haberkorn M, Laurell T, Nilsson J, Baena JR, Frank J, et al. Anal Chem 2003;75:2166.
    Google ScholarLocate open access versionFindings
  • [93] Shorygin PP, Krushinskij LL. J Raman Spectrosc 1997;28:383.
    Google ScholarLocate open access versionFindings
  • [94] Jones JC, McLaughlin C, Littlejohn D, Sadler DA, Graham D, Smith WE. Anal Chem 1999;71:596.
    Google ScholarLocate open access versionFindings
  • [95] Habuchi S, Cotlet M, Gronheid R, Dirix G, Michiels J, Vanderleyden J, et al. J Am Chem Soc 2003;125:8446.
    Google ScholarLocate open access versionFindings
  • [96] Otto A, Mrozek I, Grabhorn H, Akemann W. Condens Matter
    Google ScholarFindings
  • [97] Skadtchenko BO, Aroca R. Spectrochim Acta Part A Mol Biomol Spectrosc 2001;57A:1009.
    Google ScholarLocate open access versionFindings
  • [98] Menendez JR, Obuchowska A, Aroca R. Spectrochim Acta Part A Mol Biomol Spectrosc 1996;52A:329.
    Google ScholarLocate open access versionFindings
  • [99] Moskovits M, Suh JS. J Phys Chem 1988;92:6327.
    Google ScholarLocate open access versionFindings
  • [100] Aroca R, Scraba M, Mink J. Spectrochim Acta Part A Mol Biomol Spectrosc 1991;47A:263.
    Google ScholarFindings
  • [101] Tanaka T, Nakajima A, Watanabe A, Ohno T, Ozaki Y. Vibr Spectrosc 2004;34:, 157.
    Google ScholarLocate open access versionFindings
  • [102] Arenas JF, Fernandez DJ, Soto J, Lopez-Tocon I, Otero JC. J Phys Chem B 2003;107:13143.
    Google ScholarLocate open access versionFindings
  • [103] Aubard J, Bagnasco E, Pantigny J, Ruasse MF, Levi G, Wentrup-Byrne E. J Phys Chem 1995;99:7075.
    Google ScholarLocate open access versionFindings
  • [104] Jeong DH, Jang NH, Suh JS, Moskovits M. J Phys Chem B
    Google ScholarLocate open access versionFindings
  • [105] Zhu J, Xu F, Schofer SJ, Mirkin CA. J Am Chem Soc 1997;119:235.
    Google ScholarLocate open access versionFindings
  • [106] Anon. Anal Chem 2002;74:239A.
    Google ScholarLocate open access versionFindings
  • [107] Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, et al. Appl Spectrosc 2002;56:150.
    Google ScholarLocate open access versionFindings
  • [108] Bao P, Huang T, Liu X, Wu T. Proc SPIE Int Soc Opt Eng
    Google ScholarLocate open access versionFindings
  • [109] Drachev VP, Thoreson MD, Khaliullin EN, Davisson VJ, Shalaev VM. J Phys Chem B 2004;108:18046.
    Google ScholarLocate open access versionFindings
  • [110] Tolaieb B, Constantino CJL, Aroca RF. Analyst 2004;129:337.
    Google ScholarLocate open access versionFindings
  • [111] Moore BD, Stevenson L, Watt A, Flitsch S, Turner NJ, Cassidy C, et al. Nat Biotechnol 2004;22:1133.
    Google ScholarLocate open access versionFindings
  • [112] Nie S, Emory SR. Book of Abstracts, 213th ACS National Meeting, San Francisco, April 13 – 17;1997. PHYS.
    Google ScholarFindings
  • [113] Doering WE, Nie S. J Phys Chem B 2002;106:311.
    Google ScholarLocate open access versionFindings
  • [114] Feilchenfeld H, Chumanov G, Cotton TM. J Phys Chem 1996; 100:4937.
    Google ScholarLocate open access versionFindings
  • [115] Franzke D, Wokaun A. J Phys Chem 1992;96:6377.
    Google ScholarLocate open access versionFindings
  • [116] Suh JS, Moskovits M, Shakhesemampour J. J Phys Chem 1993; 97:1678.
    Google ScholarLocate open access versionFindings
  • [117] Jeong DH, Suh JS, Moskovits M. J Raman Spectrosc 2001;32:1026.
    Google ScholarLocate open access versionFindings
  • [118] Suh JS, Jeong DH, Lee MS. J Raman Spectrosc 1999;30:595.
    Google ScholarLocate open access versionFindings
  • [119] Jang NH, Suh JS, Moskovits M. J Phys Chem B 1997;101:1649.
    Google ScholarLocate open access versionFindings
  • [120] Shakhse-Emampour J, Jung SS, Moskovits M. Iran J Chem Chem
    Google ScholarLocate open access versionFindings
  • [121] Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Kall M, Zou S, et al. J Phys Chem B 2005;109:1079.
    Google ScholarLocate open access versionFindings
  • [122] Moskovits M, Jeong DH. Chem Phys Lett 2004;397:91.
    Google ScholarLocate open access versionFindings
  • [123] Weiss A, Haran G. J Phys Chem B 2001;105:12348.
    Google ScholarLocate open access versionFindings
  • [124] Meixner AJ, Vosgrone T, Sackrow M. J Lumin 2001;94 and 95:147.
    Google ScholarLocate open access versionFindings
  • [125] Eggeling C, Schaffer J, Seidel CAM, Korte J, Brehm G, Schneider S, et al. J Phys Chem A 2001;105:3673.
    Google ScholarLocate open access versionFindings
  • [126] Bosnick KA, Jiang J, Brus LE. J Phys Chem B 2002;106:8096.
    Google ScholarLocate open access versionFindings
  • [127] Vo-Dinh T, Stokes DL. Biomedical photonics handbook; 2003, p. 64/1.
    Google ScholarFindings
  • [128] Chourpa I, Beljebbar A, Sockalingum GD, Riou J-F, Manfait M. Biochim Biophys Acta 1997;1334:349.
    Google ScholarLocate open access versionFindings
  • [129] Sanchez-Cortes S, Jancura D, Miskovsky P, Bertoluzza A. Spectrochim Acta Part A Mol Biomol Spectrosc 1997;53A:769.
    Google ScholarLocate open access versionFindings
  • [130] Jancura D, Sanchez-Cortes S, Kocisova E, Tinti A, Miskovsky P, Bertoluzza A. Biospectroscopy 1995;1:265.
    Google ScholarLocate open access versionFindings
  • [131] Etchegoin P, Liem H, Maher RC, Cohen LF, Brown RJC, Milton MJT, et al. Chem Phys Lett 2003;367:223.
    Google ScholarLocate open access versionFindings
  • [132] Cao YC, Jin R, Nam J-M, Thaxton CS, Mirkin CA. J Am Chem Soc 2003;125:14676.
    Google ScholarLocate open access versionFindings
  • [133] Ishikawa M, Maruyama Y, Ye JY, Futamata M. J Biol Phys 2002; 28:573.
    Google ScholarLocate open access versionFindings
  • [134] Breuzard G, Millot J-M, Riou J-F, Manfait M. Anal Chem 2003; 75:4305.
    Google ScholarLocate open access versionFindings
  • [135] Faulds K, Smith WE, Graham D. Anal Chem 2004;76:412.
    Google ScholarLocate open access versionFindings
  • [136] Sanchez-Cortes S, Garcia-Ramos JV. J Colloid Interface Sci 2000; 231:98.
    Google ScholarLocate open access versionFindings
  • [137] Fabriciova G, Garcia-Ramos JV, Miskovsky P, Sanchez-Cortes S. Vibr Spectrosc 2002;30:203.
    Google ScholarLocate open access versionFindings
  • [138] Miskovsky P, Jancura D, Sanchez-Cortes S, Kocisova E, Chinsky L. J Am Chem Soc 1998;120:6374.
    Google ScholarLocate open access versionFindings
  • [139] Fabriciova G, Sanchez-Cortes S, Garcia-Ramos JV, Miskovsky P. Biopolymers 2004;74:125.
    Google ScholarLocate open access versionFindings
  • [140] Murza A, Alvarez-Mendez S, Sanchez-Cortes S, Garcıa-Ramos JV. Biopolymers 2003;72:174.
    Google ScholarLocate open access versionFindings
  • [141] Fabriciova G, Sanchez-Cortes S, Garcia-Ramos JV, Miskovsky P. J Raman Spectrosc 2004;35:384.
    Google ScholarLocate open access versionFindings
  • [142] Murza A, Sanchez-Cortes S, Garcia-Ramos JV. Biospectroscopy 1998;4:327.
    Google ScholarLocate open access versionFindings
  • [143] Giese B, McNaughton D. J Phys Chem B 2002;106:101.
    Google ScholarLocate open access versionFindings
  • [144] Fabriciova G, Garcia-Ramos JV, Miskovsky P, Sanchez-Cortes S. Vibr Spectrosc 2004;34:273.
    Google ScholarLocate open access versionFindings
  • [145] Kocisova E, Jancura D, Sanchez-Cortes S, Miskovsky P, Chinsky L, Garcia-Ramos JV. J Biomol Struct Dyn 1999;17:111.
    Google ScholarLocate open access versionFindings
  • [146] Joo S-W, Kim K. J Raman Spectrosc 2004;35:549.
    Google ScholarLocate open access versionFindings
  • [147] Sun Y, Xia Y. J Am Chem Soc 2004;126:3892.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
小科