Decarboxylating And Nondecarboxylating Glutaryl-Coenzyme A Dehydrogenases In The Aromatic Metabolism Of Obligately Anaerobic Bacteria

Journal of bacteriology(2009)

引用 36|浏览8
暂无评分
摘要
In anaerobic bacteria using aromatic growth substrates, glutaryl-coenzyme A (CoA) dehydrogenases (GDHs) are involved in the catabolism of the central intermediate benzoyl-CoA to three acetyl-CoAs and CO2. In this work, we studied GDHs from the strictly anaerobic, aromatic compound-degrading organisms Geobacter metallireducens (GDH(Geo)) (Fe[III] reducing) and Desulfococcus multivorans (GDH(Des)) (sulfate reducing). GDH(Geo) was purified from cells grown on benzoate and after the heterologous expression of the benzoate-induced bamM gene. The gene coding for GDH(Des) was identified after screening of a cosmid gene library. Reverse transcription-PCR revealed that its expression was induced by benzoate; the product was heterologously expressed and isolated. Both wild-type and recombinant GDH(Geo) catalyzed the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA at similar rates. In contrast, recombinant GDH(Des) catalyzed only the dehydrogenation to glutaconyl-CoA. The latter compound was decarboxylated subsequently to crotonyl-CoA by the addition of membrane extracts from cells grown on benzoate in the presence of 20 mM NaCl. All GDH enzymes were purified as homotetramers of a 43- to 44-kDa subunit and contained 0.6 to 0.7 flavin adenine dinucleotides (FADs)/monomer. The kinetic properties for glutaryl-CoA conversion were as follows: for GDH(Geo), the K-m was 30 +/- 2 mu M and the V-max was 3.2 +/- 0.2 mu mol min(-1) mg(-1), and for GDH(Des), the K-m was 52 +/- 5 mu M and the V-max was 11 +/- 1 mu mol min(-1) mg(-1). GDH(Des) but not GDH(Geo) was inhibited by glutaconyl-CoA. Highly conserved amino acid residues that were proposed to be specifically involved in the decarboxylation of the intermediate glutaconyl-CoA were identified in GDH(Geo) but are missing in GDH(Des). The differential use of energy-yielding/energy-demanding enzymatic processes in anaerobic bacteria that degrade aromatic compounds is discussed in view of phylogenetic relationships and constraints of overall energy metabolism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要