AI helps you reading Science

AI generates interpretation videos

AI extracts and analyses the key points of the paper to generate videos automatically


pub
Go Generating

AI Traceability

AI parses the academic lineage of this thesis


Master Reading Tree
Generate MRT

AI Insight

AI extracts a summary of this paper


Weibo:
This paper has attempted to cover a wide range of nonconventional low-cost adsorbents so that the reader can get an idea about the various types of low-cost materials used for the removal of phenolic compounds from the wastewater

Adsorption of phenolic compounds on low-cost adsorbents: A review.

Advances in Colloid and Interface Science, no. 1 (2008): 48-67

Cited by: 294|Views16
WOS EI

Abstract

Adsorption techniques are widely used to remove certain classes of pollutants from wastewater. Phenolic compounds represent one of the problematic groups. Although commercial activated carbon is a preferred adsorbent for phenol removal, its widespread use is restricted due to the high cost. As such, alternative non-conventional adsorbents...More

Code:

Data:

0
Introduction
  • Phenols are generally considered to be one of the important organic pollutants discharged into the environment causing unpleasant taste and odor of drinking water.
  • The major sources of phenol pollution in the aquatic environment are wastewaters from paint, pesticide, coal conversion, polymeric resin, petroleum and petrochemicals industries.
  • Phenols are considered as priority pollutants since they are harmful to organisms at low concentrations [1,2].
  • Phenol contents in the drinking water should not exceed 0.002 mg/L as per Indian standard
Highlights
  • Phenols are generally considered to be one of the important organic pollutants discharged into the environment causing unpleasant taste and odor of drinking water
  • There are several issues and drawbacks concerned on the adsorption of phenolic compounds that have been discussed in this review article
  • Some promising results could be found in the case of fungal biomass, bentonite, starch, fly ash, petroleum coke, coal, residual coal, residual coal treated with H3PO4, charred sawdust, cyclodextrin, silica beads, sludge materials etc
  • This paper has attempted to cover a wide range of nonconventional low-cost adsorbents so that the reader can get an idea about the various types of low-cost materials used for the removal of phenolic compounds from the wastewater
  • Inexpensive, locally available and effective materials could be used in place of commercial activated carbon for the removal of phenolic compounds from aqueous solution
  • It has been recommended that additional work is required to predict the performance of the adsorption processes for phenolic compounds removal from real industrial effluents
Results
  • An increase of approximately 300% in adsorption was observed for an increase in the DO level from 2 to 26 mg/L.
  • The removal of phenols and its derivatives was achieved up to 98% by column experiments at a flow rate of 0.5 mL/min.
  • Gupta and Ali [176] utilized red mud as adsorbent for the removal of 2,4-dinitrophenol.
  • The removal of this pollutant was achieved up to 95% by batch and 96% by column experiments at the flow rate of 0.5 mL/min
Conclusion
  • It is found from this study that natural materials, waste materials from industry and agriculture and bioadsorbents are an interesting alternative to replace activated carbons for the adsorption of phenolic compounds.
  • Not in a single case, data have been reported for the changes of the solution pH during the course of the adsorption.This paper has attempted to cover a wide range of nonconventional low-cost adsorbents so that the reader can get an idea about the various types of low-cost materials used for the removal of phenolic compounds from the wastewater.
  • From the recent literature reviewed, several adsorbents such as petroleum coke, residual coal, treated residual coal, bentonite, fungal biomass, sludge materials and dextrin have demonstrated good removal capabilities for certain phenolic compounds in comparison to the activated carbon.
Tables
  • Table1: Comparison of phenol adsorption on various low-cost adsorbents
  • Table2: Comparison of chloro substituted phenols adsorption on various low-cost adsorbents
  • Table3: Comparison of nitro-substituted phenols adsorption on various low-cost adsorbents
  • Table4: Comparison of other-substituted phenols adsorption on various low-cost adsorbents
Download tables as Excel
Funding
  • An increase of approximately 300% in adsorption was observed for an increase in the DO level from 2 to 26 mg/L
  • The removal of phenols and its derivatives was achieved up to 98% by column experiments at a flow rate of 0.5 mL/min
  • Gupta and Ali [176] utilized red mud as adsorbent for the removal of 2,4-dinitrophenol. The removal of this pollutant was achieved up to 95% by batch and 96% by column experiments at the flow rate of 0.5 mL/min
Study subjects and analysis
people: 584000
However, skin contact with phenol during its manufacture and use is considered the major route of exposure in the workplace. It has been estimated that about 584,000 people in the United States are exposed to phenol at work. Total exposure at the workplace is potentially higher than in non-workplace settings

natural species: 40
The negative charge is balanced by cations which are exchangeable with certain cations in solutions. Zeolites consist of a wide variety of species, more than 40 natural species. However, the most abundant and frequently studied zeolite is clinoptilolite, a mineral of the heulandite group

Reference
  • 8. Comparison of adsorption performance
    Google ScholarFindings
  • [1] Calace N, Nardi E, Petronio BM, Pietroletti M. Environ Pollut 2002;118:315.
    Google ScholarLocate open access versionFindings
  • [2] Akbal F, Onar AN. Environ Monit Assess 2003;83:301.
    Google ScholarLocate open access versionFindings
  • [3] Babel S, Kurniawan TA. J Hazard Mater 2003;B97:219.
    Google ScholarLocate open access versionFindings
  • [4] Derbyshire F, Jagtoyen M, Andrews R, Rao A, Martin-Gullon I, Grulke E. Carbon materials in environmental applications. In: Radovic LR, editor. Chemistry and physics of carbon, vol.
    Google ScholarLocate open access versionFindings
  • 27. New York: Marcel Dekker; 2001. p. 1–66.
    Google ScholarFindings
  • [5] Streat M, Patrick JW, Camporro Pérez MJ. Water Res 1995;29:467.
    Google ScholarLocate open access versionFindings
  • [6] Bailey SE, Olin TJ, Bricka M, Adrian DD. Water Res 1999;33:2469.
    Google ScholarLocate open access versionFindings
  • [7] Shichi T, Takagi K. J Photochem Photobiol C Photochem Rev 2000;1:113.
    Google ScholarLocate open access versionFindings
  • [8] Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O. Environ Pollut 2000;107:391.
    Google ScholarLocate open access versionFindings
  • [9] Isam S, Menahem R. Water Environ Res 1997;69:1032.
    Google ScholarLocate open access versionFindings
  • [10] Taha MR, Leng TO, Mohamad AB, Kadhum AAH. Bull Eng Geol Environ 2003;62: 251.
    Google ScholarLocate open access versionFindings
  • [11] Ramos-Vianna MMG, Franco JHR, Pinto CA, Valenzuela Díaz FR, Büchler PM, Braz J. Chem Eng 2004;21(21):239.
    Google ScholarLocate open access versionFindings
  • [12] Kaleta J. Can J Civ Eng Rev Can Genie Civ 2006;33:546.
    Google ScholarLocate open access versionFindings
  • [13] Theopharis GD, Triantafyllos AA, Dimitrios EP, Philip JP. Water Res 1998;32:295.
    Google ScholarLocate open access versionFindings
  • [14] Shen YH. Colloids Surf A Physiochem Eng Asp 2004;232:143.
    Google ScholarFindings
  • [15] Arellano-Cárdenas S, Gallardo-Velázquez T, Osorio-Revilla G, del Socorro LópezCortéz M, Gómez-Perea B. J Mex Chem Soc 2005;49:287.
    Google ScholarLocate open access versionFindings
  • [16] Sheng G, Johnston CT, Teppen BJ, Boyd SA. Clays Clay Miner 2002;50:25.
    Google ScholarLocate open access versionFindings
  • [17] Monique AML, Kukkadapu RK, Boyd SA. Appl Clay Sci 1998;13:13.
    Google ScholarLocate open access versionFindings
  • [18] Okada T, Morita T, Ogawa M. Clay Sci 2004;12:277.
    Google ScholarLocate open access versionFindings
  • [19] Okada T, Ogawa M. Chem Lett 2002;31:812.
    Google ScholarLocate open access versionFindings
  • [20] Lin SH, Cheng MJ. Environ Technol 2000;21:475.
    Google ScholarLocate open access versionFindings
  • [21] Bouras O, Houari M, Khalaf H. Environ Technol 2001;22:69.
    Google ScholarLocate open access versionFindings
  • [22] Witthuhn B, Pernyeszi T, Klauth P, Vereecken H, Klumpp E. Colloids Surf A Physiochem Eng Asp 2005;265:81.
    Google ScholarFindings
  • [23] Lin SH, Hsiao RC, Juang RS. J Hazard Mater 2006;135:134.
    Google ScholarLocate open access versionFindings
  • [24] Mortland MM, Shaobai S, Stephen Boyd A. Clays Clay Miner 1986;34:581.
    Google ScholarLocate open access versionFindings
  • [25] Koumanova B, Peeva-Antova P. J Hazard Mater 2002;90:229.
    Google ScholarLocate open access versionFindings
  • [26] Akcay M, Akcay G. J Hazard Mater 2004;113:189.
    Google ScholarLocate open access versionFindings
  • [27] Yapar S, Yilmaz M. Adsorption 2005;10:287.
    Google ScholarLocate open access versionFindings
  • [28] Al-Asheh S, Banat F, Abu-Aitah L. Sep Purif Technol 2003;33:1.
    Google ScholarFindings
  • [29] Barhoumi M, Beurroiesb I, Denoyel R, Saïd H, Hanna K. Colloids Surf A Physiochem Eng Asp 2003;223:63.
    Google ScholarFindings
  • [30] Krysztafkiewicz A, Binkowski S, Jesionowski T. Appl Surf Sci 2002;199:31.
    Google ScholarLocate open access versionFindings
  • [31] Crini G, Morcellet M. J Sep Sci 2002;25:1.
    Google ScholarLocate open access versionFindings
  • [32] Woolard CD, Strong J, Erasmus CR. Appl Geochem 2002;17:1159.
    Google ScholarLocate open access versionFindings
  • [33] Harris RG, Wells JD, Johnson BB. Colloids Surf A Physiochem Eng Asp 2001;180:131.
    Google ScholarFindings
  • [34] Phan TNT, Bacquet M, Morcellet M. J Incl Phenom Macrocycl Chem 2000;38:345.
    Google ScholarLocate open access versionFindings
  • [35] Ahmed MN, Ram RN. Environ Pollut 1992;77:79.
    Google ScholarLocate open access versionFindings
  • [36] Roostaei N, Tezel FH. J Environ Manag 2004;70:157.
    Google ScholarLocate open access versionFindings
  • [37] Ghobarkar H, Schäf O, Guth U. Prog Solid State Chem 1999;27:29.
    Google ScholarLocate open access versionFindings
  • [38] Khalid M, Joly G, Renaud A, Magnoux P. Ind Eng Chem Res 2004;43:5275.
    Google ScholarLocate open access versionFindings
  • [39] Kozhevnikov SA, Motovilova NN, Sibarov DA, Vinogradov MV. J Appl Chem USSR (Engl Transl) 1985;58:1412.
    Google ScholarLocate open access versionFindings
  • [40] Kuleyin A. J Hazard Mater 2007;144:307.
    Google ScholarLocate open access versionFindings
  • [41] Su F, Lu L, Tee Meng H, Zhao XS. Carbon 2005;43:1156.
    Google ScholarLocate open access versionFindings
  • [42] Sismanoglu T, Pura S. Colloids Surf A Physiochem Eng Asp 2001;180:1.
    Google ScholarFindings
  • [43] Syamsiah S, Hadi IS. Sep Purif Technol 2004;34:125.
    Google ScholarFindings
  • [44] Shu HT, Li D, Scala AA, Ma YH. Sep Purif Technol 1997;11:27.
    Google ScholarFindings
  • [45] Ghiaci M, Abbaspur A, Kiaa R, Seyedeyn-Azad F. Sep Purif Technol 2004;40:217.
    Google ScholarFindings
  • [46] Teng LT, Khor E, Tan TK, Lim LY, Tan SC. Carbohydr Res 2001;332:305.
    Google ScholarLocate open access versionFindings
  • [47] Guibal E. Sep Purif Technol 2004;38:43.
    Google ScholarFindings
  • [48] Varma AJ, Deshpande SV, Kennedy JF. Carbohydr Polym 2004;55:77.
    Google ScholarLocate open access versionFindings
  • [49] Ravi Kumar MNV. React Funct Polym 2000;46:1.
    Google ScholarLocate open access versionFindings
  • [50] Spagna G, Pifferi PG, Rangoni C, Mattivi F, Nicolini G, Roberto Palmonari R. Food Res Int 1996;29:241.
    Google ScholarLocate open access versionFindings
  • [51] Dursun AY, Kalayci CD. J Hazard Mater 2005;123:151.
    Google ScholarLocate open access versionFindings
  • [52] Sun WQ. Biotechnol Prog 1992;8:179.
    Google ScholarLocate open access versionFindings
  • [53] Rhee JS, Jung MW, Paeng KJ. Anal Sci 1998;14:1089.
    Google ScholarLocate open access versionFindings
  • [54] Annadurai G, Rajesh Babu S, Mahesh KPO, Murugesan T. Bioprocess Eng 2000;22: 493.
    Google ScholarLocate open access versionFindings
  • [55] Couillard D. Water Res 1994;28:1261.
    Google ScholarLocate open access versionFindings
  • [56] Smith EF, McCarthy P, Yu TC, Mark Jr HB. Chem Eng J 1977;49:633.
    Google ScholarLocate open access versionFindings
  • [57] Sun Q, Yang L. Water Res 2003;37:1535.
    Google ScholarLocate open access versionFindings
  • [58] Brown PA, Gill SA, Allen SJ. Water Res 2000;34:3907.
    Google ScholarLocate open access versionFindings
  • [59] Viraraghavan T, Slough K. Chemosphere 1999;39:1487.
    Google ScholarLocate open access versionFindings
  • [60] Tanjore S, Viraraghavan T. Water Air Soil Pollut 1997;100:151.
    Google ScholarFindings
  • [61] Zhong CHU, Rozer AI, William AK, Ron LC. Environ Sci Technol 1994;28:497.
    Google ScholarLocate open access versionFindings
  • [62] Amellal N, Portal JM, Berthelin J. Appl Geochem 2001;16:1611.
    Google ScholarLocate open access versionFindings
  • [63] Farrell A, Quilty B. Water Res 2002;36:2443.
    Google ScholarLocate open access versionFindings
  • [64] Garcia IG, Pena JLB, Venceslada AM, Martin MM, Santos ER, Gomez M. Proc Biochem 2000;35:751.
    Google ScholarLocate open access versionFindings
  • [65] Bogan BW, Sullivan WR. Chemosphere 2003;52:1717.
    Google ScholarLocate open access versionFindings
  • [66] Chitra S, Sekaran G, Gowri C. J Hazard Mater 1996;48:239.
    Google ScholarLocate open access versionFindings
  • [67] Denizli A, Cihangir N, Rad AY, Taner M, Alsancak G. Process Biochem 2004;39: 2025.
    Google ScholarLocate open access versionFindings
  • [68] Wang J, Qian Y, Nigel H, Ed Stentiford E. Bioresour Technol 2000;75:157.
    Google ScholarLocate open access versionFindings
  • [69] Annadurai G, Ling LY, Lee JF. Afr J Biotechnol 2007;6:296.
    Google ScholarLocate open access versionFindings
  • [70] Jacobsen BN, Arvin E, Reinders M. Water Res 1996;30:13.
    Google ScholarLocate open access versionFindings
  • [71] Denizli A, Cihangir N, Tüzmen N, Alsancak G. Bioresour Technol 2005;96:59.
    Google ScholarLocate open access versionFindings
  • [72] Rao JR, Viraraghavan T. Bioresour Technol 2002;85:165.
    Google ScholarLocate open access versionFindings
  • [73] Rubín E, Rodrígue P, Herrero R, Sastre de V, Manuel E. J Chem Technol Biotechnol
    Google ScholarLocate open access versionFindings
  • [74] Wu J, Yu HQ. J Hazard Mater 2006;B137:498.
    Google ScholarLocate open access versionFindings
  • [75] Juan WU, Han-Qing YU. Process Biochem 2006;41:44.
    Google ScholarLocate open access versionFindings
  • [76] Abel EN, Rosario FP, María RSK, Bertha PL. J Hazard Mater 2008;156:405.
    Google ScholarLocate open access versionFindings
  • [77] Carrasco-Marin F, Alvarez-Merino MA, Moreno-Castilla C. Fuel 1996;75:966.
    Google ScholarLocate open access versionFindings
  • [78] Illan Gomez MJ, Garcia-Garcia A, Salinas-Martinez de Lecea C, Linares-Solano A. Energy Fuel 1996;10:1108.
    Google ScholarLocate open access versionFindings
  • [79] Karaca S, Gürses A, Bayrak R. Energy Convers Manag 2004;45:1693.
    Google ScholarLocate open access versionFindings
  • [80] Colella LS, Armenante PM. J Chem Eng Data 1998;43:573.
    Google ScholarLocate open access versionFindings
  • [81] Dobbs RA, Cohen JM. Carbon adsorption isotherms for toxic organics. Cincinnati, Ohio: Municipal Environmental Research Laboratory, Office of Research and Development, USEPA; 1980.
    Google ScholarFindings
  • [82] Zogorski JS, Faust SD, Haas Jr JH. J Colloid Interface Sci 1976;55:329.
    Google ScholarLocate open access versionFindings
  • [83] Snoeyink VL, McCreary JJ, Murin CJ. Carbon adsorption of trace organic compounds. Cincinnati, Ohio: Municipal Research Lab, Office of Research and Development, U.S. Environmental Protection Agency; 1977.
    Google ScholarLocate open access versionFindings
  • [84] Ward TM, Getzen FW. Environ Sci Technol 1970;4:64.
    Google ScholarLocate open access versionFindings
  • [85] Caturla F, Martin-Martinez JM, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. J Colloid Interface Sci 1988;124:528–34.
    Google ScholarLocate open access versionFindings
  • [86] Jossens L, Prausnitz JM, Fritz W, Schlunder EU, Myers AL. Chem Eng Sci 1978;17: 389.
    Google ScholarLocate open access versionFindings
  • [87] Radhika M, Palanivelu K. J Hazard Mater 2006;B138:116.
    Google ScholarLocate open access versionFindings
  • [88] Seidel A, Tzscheutschler E, Radke KH, Gelbin D. Chem Eng Sci 1985;40:215.
    Google ScholarLocate open access versionFindings
  • [89] Tessmer CH, Vidic RD, Uranowski LJ. Environ Sci Technol 1997;31:1872.
    Google ScholarLocate open access versionFindings
  • [90] Vidic RD, Suidan MT, Brenner RC. Environ Sci Technol 1993;27:2079.
    Google ScholarLocate open access versionFindings
  • [91] Magne P, Walker PLJ. Carbon 1986;24:101.
    Google ScholarLocate open access versionFindings
  • [92] Coughlin RW, Ezra FS. Environ Sci Technol 1968;2:291.
    Google ScholarLocate open access versionFindings
  • [93] Srivastava SK, Tyagi R, Pal N, Mohan D. J Environ Eng 1997;123:842.
    Google ScholarLocate open access versionFindings
  • [94] Juang RS, Wu FC, Tseng RL. J Chem Eng Data 1996;41:487.
    Google ScholarLocate open access versionFindings
  • [95] Zhonghau H, Srinivasan M. Microporous Mesoporous Mater 1999;27:11.
    Google ScholarLocate open access versionFindings
  • [96] Rengaraj S, Moon SH, Sivabalan R, Arabindoo B, Murugesan V. J Hazard Mater
    Google ScholarLocate open access versionFindings
  • [97] Goud VV, Mohanty K, Rao MS, Jayakumar NS. Chem Eng Technol 2005;28:814.
    Google ScholarLocate open access versionFindings
  • [98] Wang SL, Tzou YM, Lu YH, Sheng G. J Hazard Mater 2007;147:313.
    Google ScholarLocate open access versionFindings
  • [99] Banat F, Al-Asheh S, Al-Makhadmeh L. Chem Eng Technol 2004;27:80.
    Google ScholarLocate open access versionFindings
  • [100] Termoul M, Bestani B, Benderdouche N, Belhakem M, Naffrechoux E. Adsorp Sci Technol 2006;24:375.
    Google ScholarLocate open access versionFindings
  • [101] Gupta VK, Mohan D, Singh KP. Ind Eng Chem Res 2006;45:1113.
    Google ScholarLocate open access versionFindings
  • [102] Sathishkumar M, Binupriya AR, Kavitha D, Yun SE. Bioresour Technol 2007;98: 866.
    Google ScholarLocate open access versionFindings
  • [103] Namasivayam C, Kavitha D. Sep Sci Technol 2004;39:1407.
    Google ScholarLocate open access versionFindings
  • [104] Dursun G, Çiçek H, Dursun AY. J Hazard Mater 2005;125:175.
    Google ScholarLocate open access versionFindings
  • [105] Wu FC, Tseng RL, Juang RS. Sep Purif Technol 2005;47:10.
    Google ScholarFindings
  • [106] Alam MZ, Muyibi SA, Mansor MF, Wahid R. J Environ Sci (China) 2006;18:446.
    Google ScholarLocate open access versionFindings
  • [107] Mohanty K, Das D, Biswas MN. Chem Eng J 2005;115:121.
    Google ScholarLocate open access versionFindings
  • [108] Gan H, Nandi SP, Walker PL. Fuel 1972;51:272.
    Google ScholarLocate open access versionFindings
  • [109] Walker PCJ, Mahajan OP. Energy Fuels 1993;7:559.
    Google ScholarLocate open access versionFindings
  • [110] Teng H, Yeh TS, Hsu LY. Carbon 1998;36:1387.
    Google ScholarLocate open access versionFindings
  • [111] Moreno-Castilla C, Rivera-Utrilla J, López-Ramón MV, Carrasco-Marin F. Carbon
    Google ScholarFindings
  • [112] Haghseresht F, Lu GQ. Energy Fuels 1998;12:1100.
    Google ScholarLocate open access versionFindings
  • [113] Hobday MD, Li PHW, Crewdson DM, Bhargava SK. Fuel 1994;73:1848.
    Google ScholarLocate open access versionFindings
  • [114] Ishaq M, Ahmad I, Shakirullah M, Habib Ur Rehman, Khan A, Ahmad M, et al. Toxicol Environ Chem 2007;89:1.
    Google ScholarLocate open access versionFindings
  • [115] Das A, Sharma DK. Energy Sources 1998;20:821.
    Google ScholarLocate open access versionFindings
  • [116] Ahmaruzzaman M, Sharma DK. J Colloid Interface Sci 2005;287:14.
    Google ScholarLocate open access versionFindings
  • [117] Polat H, Molva M, Polat M. Int J Miner Process 2006;79:264.
    Google ScholarLocate open access versionFindings
  • [118] Finquensel G, Zimny T, Albiniak A, Siemieniewska T, Vogt D, Weber JV. Fuel
    Google ScholarLocate open access versionFindings
  • [119] Garg VK, Amita M, Kumar R, Gupta R. Dyes Pigm 2004;63:243.
    Google ScholarLocate open access versionFindings
  • [120] Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS. J Hazard Mater 2002; B95:137.
    Google ScholarLocate open access versionFindings
  • [121] Dutta S, Basu JK, Ghar RN. Sep Purif Technol 2001;21:227.
    Google ScholarFindings
  • [122] Nenkova S, Radev L. J Univ Chem Technol Metallur 2004:39 Book 2.
    Google ScholarLocate open access versionFindings
  • [123] Jadhav N, Vanjara AK. Ind J Chem Technol 2004;11:35.
    Google ScholarLocate open access versionFindings
  • [124] Edgehill RU, Max Lu GQ. J Chem Technol Biotechnol 1998;71:7.
    Google ScholarLocate open access versionFindings
  • [125] Vázquez G, González-Álvarez J, García AI, Freire MS, Antorrena G. Bioresour Technol 2007;98:1535.
    Google ScholarLocate open access versionFindings
  • [126] Vazquez G, Alonso R, Freire S, Gonzalez-Alvarez J, Antorrena G. J Hazard Mater
    Google ScholarLocate open access versionFindings
  • [127] Brás I, Lemos L, Alves A, Pereira MFR. Chemosphere 2005;60:1095.
    Google ScholarLocate open access versionFindings
  • [128] Williams PT, Nugranad N. Energy 2000;25:493.
    Google ScholarLocate open access versionFindings
  • [129] Khalid N, Ahmad S, Toheed A, Ahmad J. Appl Radiat Isotopes 2000;52:30.
    Google ScholarLocate open access versionFindings
  • [130] Nakbanpote W, Thiravetyan P, Kalambaheti C. Miner Eng 2000;13:391.
    Google ScholarLocate open access versionFindings
  • [131] Kumar S, Upadhyay SN, Upadhya YD. J Chem Technol Biotechnol 1987;37:281.
    Google ScholarLocate open access versionFindings
  • [132] Akhtar M, Bhanger MI, Iqbal S, Hasany SM. J Hazard Mater 2006;B128:44.
    Google ScholarLocate open access versionFindings
  • [133] Mahvi AH, Maleki A, Eslami A. Am J Appl Sci 2004;1:321.
    Google ScholarLocate open access versionFindings
  • [134] Janos P, Buchtova H, Ryznarova M. Water Res 2003;37:4938.
    Google ScholarLocate open access versionFindings
  • [135] Mohan D, Singh KP, Singh G, Kumar K. Ind Eng Chem Res 2002;41:3688.
    Google ScholarLocate open access versionFindings
  • [136] Gupta VK, Mohan D, Sharma S, Sharma M. Sep Sci Technol 2000;35:2097.
    Google ScholarLocate open access versionFindings
  • [137] Wang YH, Zhang JC, Song LF, Hu JY, Ong SL, Ng WJ. Environ Eng Sci 2005;22:608.
    Google ScholarLocate open access versionFindings
  • [138] Ho YS, McKay G. J Environ Sci Health 1999;A34:1179.
    Google ScholarLocate open access versionFindings
  • [139] Khanna P, Malhotra SK. Ind J Environ Health 1997;19:224.
    Google ScholarLocate open access versionFindings
  • [140] Kumar S, Upadhyay SN, Upadhya YD. J Chem Technol Biotechnol 1987;37:281.
    Google ScholarLocate open access versionFindings
  • [141] Alemany LJ, Jimenez MC, Larrubia MA, Delgado F, Blasco JM. Adsorp Sci Technol
    Google ScholarLocate open access versionFindings
  • [142] Akgerman A, Zardkoohi M. J Chem Eng Data 1996;41:185.
    Google ScholarLocate open access versionFindings
  • [143] Aksu Z, Yener J. J Environ Sci Health Part A Environ Sci Eng 1999;34:1777.
    Google ScholarLocate open access versionFindings
  • [144] Aksu Z, Yener J. Waste Manage 2001;21:695.
    Google ScholarLocate open access versionFindings
  • [145] Daifullah AEH, Gad H. Adsorp Sci Technol 1998;16:273.
    Google ScholarLocate open access versionFindings
  • [146] Gupta VK, Sharma S, Yadav IS, Mohan D. J Chem Technol Biotechnol 1998;71:180.
    Google ScholarLocate open access versionFindings
  • [147] Dutta B, Basu JK, DasGupta S. Sep Sci Technol 2003;38:1345.
    Google ScholarLocate open access versionFindings
  • [148] Kao PC, Tzeng JH, Huang TL. J Hazard Mater 2000;76:237.
    Google ScholarLocate open access versionFindings
  • [149] Viraraghavan T, de Maria Alfaro F. J Hazard Mater 1998;57:59.
    Google ScholarLocate open access versionFindings
  • [150] Sarkar M, Acharya PK, Bhattacharya B. J Colloid Interface Sci 2003;266:28.
    Google ScholarLocate open access versionFindings
  • [151] Singh BK, Misra NM, Rawat NS. Ind J Environ Health 1994;36:1.
    Google ScholarLocate open access versionFindings
  • [152] Singh AK, Mall ID, Singh D, Mishra IM. IPPTA Q J Indian Pulp Paper Tech Assoc
    Google ScholarLocate open access versionFindings
  • [153] Singh AK, Mall ID, Singh D, Prasad B, Mishra IM. IPPTA Q J Indian Pulp Paper Tech Assoc 2002;14:43.
    Google ScholarLocate open access versionFindings
  • [154] Singh BK, Nayak PS. Adsorp Sci Technol 2004;22:295.
    Google ScholarLocate open access versionFindings
  • [155] Damaris NM, Paul MS, Rachel MN, Geoffrey NK. J Environ Monit 2002;4:978.
    Google ScholarLocate open access versionFindings
  • [156] Batabyal D, Sahu A, Chaudhuri SK. Sep Technol 1995;5:179.
    Google ScholarLocate open access versionFindings
  • [157] Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM. Colloids Surf A Physiochem Eng Asp 2006;272:89.
    Google ScholarFindings
  • [158] Mukherjee S, Kumar S, Misra AK, Fan M. Chem Eng J 2007;129:133.
    Google ScholarLocate open access versionFindings
  • [159] Ugurlu M, Gurses A, Yalcin M, Dogar C. Adsorption 2005;11:87.
    Google ScholarLocate open access versionFindings
  • [160] Wang HL, Jiang WF. Ind Eng Chem Res 2007;47:5405.
    Google ScholarLocate open access versionFindings
  • [161] Gonen F, Aksu Z. Chem Eng Commun 2003;190:763.
    Google ScholarLocate open access versionFindings
  • [162] Aksu Z, Gönen F. Sep Purif Technol 2006;49:205.
    Google ScholarFindings
  • [163] Aksu Z, Yerner J. Process Biochem 1998;33:649.
    Google ScholarLocate open access versionFindings
  • [164] Idris A, Saed K. Environmentalist 2003;23:329.
    Google ScholarLocate open access versionFindings
  • [165] Martin MJ, Artola A, Balaguer MD, Rigola M. Biotechnol Lett 2002;24:163.
    Google ScholarLocate open access versionFindings
  • [166] Yener J, Aksu Z. Turk J Eng Environ Sci 1999;23:93.
    Google ScholarLocate open access versionFindings
  • [167] Kargi F, Konya I. Environ Eng Sci 2006;23:705.
    Google ScholarLocate open access versionFindings
  • [168] Kennedy KJ, Lu J, Mohn WW. Water Res 1992;26:1085.
    Google ScholarLocate open access versionFindings
  • [169] Wang J, Qian YH, Nigel ES. Bioresour Technol 2000;75:157.
    Google ScholarLocate open access versionFindings
  • [170] Thawornchaisit U, Pakulanon K. Bioresour Technol 2007;98:140.
    Google ScholarLocate open access versionFindings
  • [171] Rio S, Le Coq L, Faur C, Lecomte D, Le Cloirec P. Preparation of adsorbents from sewage sludge by steam activation for industrial emission treatment. B4 Spec Issue 1st Int Conf Eng Waste Treat 2006;84:258–64.
    Google ScholarFindings
  • [172] Otero M, Rozada F, Calvo LF, Garca AI, Moran A. Dyes Pigm 2003;57:55.
    Google ScholarLocate open access versionFindings
  • [173] Das CP, Patnaik LN. Pract Period Hazard Toxic Radioact Waste Manag 2005;9:135.
    Google ScholarFindings
  • [174] Bhatnagar A. J Hazard Mater 2007;B13:993.
    Google ScholarLocate open access versionFindings
  • [175] Gupta VK, Ali I, Saini VK. Environ Sci Technol 2004;38:4012.
    Google ScholarLocate open access versionFindings
  • [176] Gupta VK, Ali I. Int J Environ Pollut 2006;27:104.
    Google ScholarLocate open access versionFindings
  • [177] Tor A, Cengeloglu Y, Aydin ME, Ersoz M. J Colloid Interface Sci 2006;15:498.
    Google ScholarLocate open access versionFindings
  • [178] Jain AK, Suhas, Bhatnagar A. J Colloid Interface Sci 2002;251:39.
    Google ScholarLocate open access versionFindings
  • [179] Akbal F. J Environ Manage 2005;74:239.
    Google ScholarLocate open access versionFindings
  • [180] Darwish NA, Halhouli KA, Al-Dhoon NM. Sep Sci Technol 1996;31:705.
    Google ScholarLocate open access versionFindings
  • [181] Al-Asheh S, Banat F, Masad A. Environ Geol 2004;45:1109.
    Google ScholarLocate open access versionFindings
  • [182] Banat FA, Al-Asheh S. Adsorp Sci Technol 2001;19:599.
    Google ScholarLocate open access versionFindings
  • [183] Banat FA, Al-Asheh S. Environ Eng Policy 2000;2:85.
    Google ScholarFindings
  • [184] Banat FA, Al-Asheh S. Adsorp Sci Technol 2001;19:553.
    Google ScholarLocate open access versionFindings
  • [185] Schellenberg K, Leuenberger C, Rend P, Schwarzenbach RP. Environ Sci Technol
    Google ScholarLocate open access versionFindings
  • [186] Xiaoli C, Youcai Z. J Hazard Mater 2006;B137:410.
    Google ScholarLocate open access versionFindings
  • [187] Asyhar R, Wichmann H, Bahadir M, Cammenga HK. Fresenius Environ Bull
    Google ScholarFindings
  • [188] Daifullah AE, El-Reefy S, Gad H. Adsorp Sci Technol 1997;7:485.
    Google ScholarLocate open access versionFindings
  • [189] Cahn WC, Fu TP. J Appl Polym Sci 1999;67:1085.
    Google ScholarLocate open access versionFindings
  • [190] Cahn WC, Fu TP. J Polym Res 1997;4:47.
    Google ScholarLocate open access versionFindings
  • [191] Cahn WC. Polym Int 1995;38:319.
    Google ScholarLocate open access versionFindings
  • [192] Delval F, Crini G, Vebrel J. Bioresour Technol 2006;97:2173.
    Google ScholarLocate open access versionFindings
  • [193] Kitaoka M, Hayashi K. J Incl Phenom Macrocycl Chem 2002;44:429.
    Google ScholarLocate open access versionFindings
  • [194] Crini G, Morin N, Rouland JC, Janus L, Morcellet M, Bertini S. Eur Polym J 2002;38: 1095.
    Google ScholarLocate open access versionFindings
  • [195] Crini G, Janus L, Morcellet M, Torri G, Morin N. J Appl Polym Sci 1999;73:2903.
    Google ScholarLocate open access versionFindings
Your rating :
0

 

Tags
Comments
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科